【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交AC与E,交BC与D.求证:
(1)D是BC的中点;
(2)△BEC∽△ADC;
(3)BC2=2AB·CE.
【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析
【解析】试题分析:(1)由AB是直径,圆周角定理可得∠ADB=90°,即AD⊥BC,再根据等腰三角形的性质即可证得;
(2)欲证△BEC∽△ADC,通过观察发现两个三角形已经具备一组角对应相等,即∠AEB=∠ADC=90°,再根据公共角即可证得;
(3)由△BEC∽△ADC可证CDBC=ACCE,又D是BC的中点,AB=AC,即可证BC2=2ABCE.
证明:(1)∵AB是直径,
∴∠ADB=90°,
∴AD⊥BC,
∵AB=AC,
∴D是BC的中点;
(2)∵AB是直径,
∴AD⊥BC,BE⊥AC,
∴∠ADC=∠BEC=90°,
又∵∠C=∠C,
∴△BEC∽△ADC;
(3)∵△BEC∽△ADC,
∴=,
∴BCCD=ACCE,
∵AB=AC,AD⊥BC,
∴CD=BC,
∴BCBC=ABCE,
即BC2=2ABCE.
科目:初中数学 来源: 题型:
【题目】某日,北京市的最低气温是-11℃,嘉兴市的最低气温是-1℃,则这一天北京的最低气温比嘉兴的最低气温低( )
A.-12℃
B.-10℃
C.10℃
D.12℃
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的有( )
①对顶角相等;②同位角相等;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不相等,则这两个角一定不是同位角.
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形的边长为4,点是边上一动点(不与点重合),以为边在的下方作等边三角形,连接.
(1)在运动的过程中, 与有何数量关系?请说明理由.
(2)当时,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法①AD是∠BAC的平分线;②∠ADC=60°③点D在AB的中垂线上;正确的个数是 个.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校规定:学生的数学学期综合成绩是由平时、期中和期末三项成绩按3:3:4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分,90分和85分,则他本学期数学学期综合成绩是 分.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com