精英家教网 > 初中数学 > 题目详情

【题目】如图1,图2,分别是吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为1.8米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米,参考数据:sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)

【答案】A到地面的距离为12.9米.

【解析】试题分析过点AAMBCM先证明∠ABC=ACB推出AB=AC.在RtACM求出AC再在RtACE中求出AE即可解决问题.

试题解析由题可知,BHHEAEHECD=2米,BC=4米,∠BCH=30°,∠ABC=80°,∠ACE=70°.∵∠BCH+ACB+ACE=180°,∴∠ACB=80°

∵∠ABC=80°,∴∠ABC=ACB,∴AB=AC

过点AAMBCM,则CM=BM=2米.

∵在RtACM中,CM=2米,∠ACB=80°,∴=cosACB=cos80°≈0.17,∴AC==(米).∵在RtACE中,AC=,∠ACE=70°,∴=sinACE=sin70°≈0.94

AE=×0.94=≈11.1(米),11.1+2=13.1(米)

故点A到地面的高度为13.1米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1关于点B的中心对称得C2,C2与x轴交于另一点C,将C2关于点C的中心对称得C3,连接C1与C3的顶点,则图中阴影部分的面积为_____

【答案】32

【解析】试题分析:抛物线y=﹣x2﹣2x+3x轴交于点AB

y=0时,则﹣x2﹣2x+3=0

解得x=﹣3x=1

AB的坐标分别为(﹣30),(10),

AB的长度为4

C1C3两个部分顶点分别向下作垂线交x轴于EF两点.

根据中心对称的性质,x轴下方部分可以沿对称轴平均分成两部分补到C1C2

如图所示,阴影部分转化为矩形.

根据对称性,可得BE=CF=4÷2=2,则EF=8

利用配方法可得y=﹣x2﹣2x﹣3=﹣x+12+4

则顶点坐标为(﹣14),即阴影部分的高为4

S=8×4=32

考点:抛物线与x轴的交点.

型】填空
束】
17

【题目】解方程:(1)2(3x﹣1)=16;(2);(3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,ADBC,ABBC,CDDE,CD=ED,AD=2,BC=3,则ADE的面积为( )

A.1 B.2 C.5 D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,一条直线经过A(﹣1,5),P(2,a),B(3,﹣3).

(1)求直线AB的函数表达式;

(2)求a的值;

(3)求AOP的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,货轮O在航行过程中,发现灯塔A在它北偏东30°的方向上,海岛B在它南偏东60°方向上.则下列结论:

①∠NOA30°

②图中∠NOB的补角有两个,分别是∠SOB和∠EOA

③图中有4对互余的角;

④货轮O在海岛B的西偏北30°的方向上.

其中正确结论的个数有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,反比例函数图像与直线相交于横坐标为3的点A

1)求反比例函数的解析式;

2)如果点B在直线上,点C在反比例函数图像上,BC//轴,BC= 4,且BC在点A上方,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,直线x轴交于点A,在第一象限内与反比例函数图像交于点BBC垂直于x轴,垂足为点C,且OC=2AO.求

1)点的坐标;

2)反比例函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在图1、图2中,线段AC=CE,点B是线段AC的中点,点D是线段CE的中点,四边形BCGFCDHN都是正方形,AE的中点是M.如图1,点EAC的延长线上,点N与点G重合时,点M与点C重合,容易证明FM=MH,FMHM;现将图1CE绕点C顺时针旋转一个锐角,得到图2,判断FMH的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着互联网的普及某手机厂商采用先网络预定然后根据订单量生产手机的方式销售2015年该厂商将推出一款新手机根据相关统计数据预测定价为2200日预订量为20000若定价每减少100则日预订量增加10000

1设定价减少x预订量为y写出yx的函数关系式

2若每台手机的成本是1200求所获的利润w(元x(元的函数关系式并说明当定价为多少时所获利润最大

3若手机加工厂每天最多加工50000且每批手机会有5%的故障率通过计算说明每天最多接受的预订量为多少?按最大量接受预订时每台售价多少元?

查看答案和解析>>

同步练习册答案