精英家教网 > 初中数学 > 题目详情
当-1<x<3时,下列函数:①y=2x;②y=-2+
1
2
x
;③y=-
7
x
;④y=x2+6x+8,函数值y随自变量x增大而增大的有(  )
A、1个B、2个C、3个D、4个
分析:一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.
解答:解:①②为一次函数,且a>0时,函数值y总是随自变量x增大而增大;
③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当-1<x<3时,就不能确定增减性了;
④为二次函数,对称轴为x=-3,开口向上,故当-1<x<3时,函数值y随自变量x增大而增大,
符合题意的是①②④,
故选C.
点评:本题考查了一次函数、反比例函数、二次函数的增减性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知二次函数y=ax2+bx+c的x与y的部分对应值如下表:
x -1 0 1 2
y 0 3 4 3
则下列关于该函数的判断中不正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

你一定玩过荡秋千的游戏吧,小明在荡秋千时发现:如图,当秋千AB在静止位置时,下端B离地面0.5米,当秋千荡到AC位置时,下端C距静止时的水平距离CD为4米,距地面2.5米,请你计算秋千AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知A、B在数轴上分别表示a、b
(1)对照数轴填写下表:
a 6 -6 -6 -6 2 -1.5
b 4 0 4 -4 -10 -1.5
A、B两点的距离
(2)若A、B两点间的距离记为d,试问d和a、b有何数量关系?
(3)在数轴上标出所有符合条件的整数点P,使它到10和-10的距离之和为20,并求所有这些整数的和.
(4)若点C表示的数为x,当点c在什么位置时,|x+1|+|x-2|取得的值最小?

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读以下材料并填空:平面上有n个点(n≥2)且任意三个点不在同一直线上,过这些点作直线一共能作出多少条不同的直线?
分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线,当有5个点时可连成10条直线…
推导:平面上有n个点,因为两点可确定一条直线,所以每个点都可与除本身之外的其余(n-1)个点确定一条直线,即共有
n(n-1)条直线.但因AB与BA是同一条直线,故每一条直线都数了2遍,所以直线的实际总条数为
n(n-1)
2

试结合以上信息,探究以下问题:
平面上有n(n≥3)个点,任意3个点不在同一直线上,过任意3点作三角形,一共能作出多少个不同的三角形?
分析:考察点的个数n和可作出的三角形的个数 sn,发现:(填下表)
点的个数 可连成的三角形的个数
3
1
1
4
4
4
5
10
10
n
n(n-1)(n-2)
6
n(n-1)(n-2)
6
推导:
平面上有n个点,过不在同一直线上的三点可以确定1个三角形,取第一个点A有n种取法,取第二个点B有(n-1)种取法.取第三个点C有(n-2)种取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一个三角形,故应除以6,即Sn=
n(n-1)(n-2)
6
平面上有n个点,过不在同一直线上的三点可以确定1个三角形,取第一个点A有n种取法,取第二个点B有(n-1)种取法.取第三个点C有(n-2)种取法,但△ABC、△ACB、△BAC、△BCA、△CAB、△CBA是同一个三角形,故应除以6,即Sn=
n(n-1)(n-2)
6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

你一定玩过荡秋千的游戏吧,小明在荡秋千时发现:如图,当秋千AB在静止位置时,下端B离地面0.5米,当秋千荡到AC位置时,下端C距静止时的水平距离CD为4米,距地面2.5米,请你计算秋千AB的长.

查看答案和解析>>

同步练习册答案