【题目】解方程:
我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选两个,并选择你认为适当的方法解这个方程.
①x2-4x-1=0,②x(2x+1)=8x-3,③x2+3x+1=0,④x2-9=4(x-3)
我选择第几个方程.
【答案】x1=3,x2=1.
【解析】
①此方程利用公式法解比较方便;
②此方程利用因式分解法解比较方便;
③此方程利用公式法解比较方便;
④此方程利用因式分解法解比较方便.
我选第①个方程,解法如下:
x2-4x-1=0,
这里a=1,b=-4,c=-1,
∵△=16+4=20,
∴x==2±,
则x1=2+,x2=2-;
我选第②个方程,解法如下:
x(2x+1)=8x-3,
整理得:2x2-7x+3=0,
分解因式得:(2x-1)(x-3)=0,
可得2x-1=0或x-3=0,
解得:x1= ,x2=3;
我选第③个方程,解法如下:
x2+3x+1=0,
这里a=1,b=3,c=1,
∵△=9-4=5,
∴x=,
则x1=,x2=;
我选第④个方程,解法如下:
x2-9=4(x-3),
变形得,(x+3)(x-3)-4(x-3)=0,
因式分解得,(x-3)(x+3-4)=0,
∴x-3=0或x+3-4=0,
∴x1=3,x2=1
科目:初中数学 来源: 题型:
【题目】如图,已知正方形ABCD中,AB=4,点E,F在对角线BD上,AE∥CF.
(1)求证:△ABE≌△CDF;
(2)若∠ABE=2∠BAE,求DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】垫球是排球队常规训练的重要项目之一,下列图表中的数据是运动员甲、乙、丙三人每人10次垫球测试的成绩,测试规则为每次连续接球10个,每垫球到位1个记1分,已知运动员甲测试成绩的中位数和众数都是7.
运动员甲测试成绩统计表
测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩(分) | 7 | 6 | 8 | 7 | 6 | 8 | 6 | 8 |
(1)填空:______;______.
(2)要从他们三人中选择一位垫球较为稳定的接球能手,你认为选谁更合适?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,E,F分别为线段AC上的两个动点,且于E,于F.若,,BD交AC于点M.
(1)求证:,.
(2)当点E,F移动至图2所示的位置时,其余条件不变,上述结论是否成立?如果成立,请直接给出结论,如果不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.
(1)求每个篮球和每个足球的售价;
(2)如果学校计划购买这两种球共50个,总费用不超过5500元,那么最多可购买多少个足球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出.
(1)求点Q运动的速度;
(2)求图2中线段FG的函数关系式;
(3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC
①求证:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.
(1)A点的坐标是 ;B点坐标是 ;
(2)直线BC的解析式是: ;
(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;
(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com