精英家教网 > 初中数学 > 题目详情
精英家教网如图,AB是半圆O的直径,C、D、E三点在半圆上,H、K是直径AB上的点,若∠AHC=∠DHB,∠DKA=∠EKB,已知弧AC为30°,弧BE为70°,则∠HDK=(  )
A、30°B、40°C、70°D、80°
分析:如果将半圆O补全,得圆O.过点D作DF⊥AB于P,交⊙O于F,连接HF、FK.首先由垂径定理,可得DP=FP,则AB是DF的垂直平分线,由线段的垂直平分线的性质得出HD=HF,KD=KF,再由等腰三角形的性质可得∠HDF=∠HFD,∠KDF=∠KFD.然后根据平角的定义证明C、H、F三点共线,E、K、F三点共线.从而∠HDK=∠CFE,最后由圆周角定理求出∠HDK的度数.
解答:精英家教网解:将半圆O补全,得圆O.过点D作DF⊥AB于P,交⊙O于F,连接HF、FK.
∵DF⊥AB于P,AB是圆O的直径,
∴DP=FP,
∴AB是DF的垂直平分线,
∴HD=HF,KD=KF,
∴∠HDF=∠HFD,∠KDF=∠KFD.
∵HD=HF,DP=FP,
∴∠FHB=∠DHB,
∵∠AHC=∠DHB,
∴∠FHB=∠AHC,
∴∠AHC+∠AHF=∠FHB+∠AHF=180°,
∴C、H、F三点共线.
同理,E、K、F三点共线.
∴∠HDK=∠HDF+∠KDF=∠HFD+∠KFD=∠CFE,
又∵弧AC为30°,弧BE为70°,
∴弧CE为180°-30°-70°=80°,
∴∠CFE=
1
2
×80°=40°,
∴∠HDK=40°.
故选B.
点评:本题主要考查了垂径定理,线段垂直平分线、等腰三角形的性质,圆周角定理及三点共线的证明方法.综合性强,有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆O的直径,AC是弦,点P从点B开始沿BA边向点A以1cm/s的速度移动,若AB长为10cm,点O到AC的距离为4cm.
(1)求弦AC的长;
(2)问经过几秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,AB是半圆O的直径,OD是半径,BM切半圆于点B,OC与弦AD平行交BM于点C.
(1)求证:CD是半圆O的切线;
(2)若AB的长为4,点D在半圆O上运动,当AD的长为1时,求点A到直线CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB是半圆O的直径,点D是半圆上一动点,AB=10,AC=8,当△ACD是等腰三角形时,点D到AB的距离是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,以OA为直径的半圆O′与弦AC交于点D,O′E∥AC,并交OC于点E,则下列结论:①S△O′OE=
1
2
S△AOC2;②点D时AC的中点;③
AC
=2AD;④四边形O′DEO是菱形.其中正确的结论是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,F为垂足,交AC于点C使∠BED=∠C.请判断直线AC与圆O的位置关系,并证明你的结论.

查看答案和解析>>

同步练习册答案