精英家教网 > 初中数学 > 题目详情
9.如图①,△ABC的内角∠ABC的平分线与外角∠ACD的平分线相交于P点,∠A=40°,求∠P的度数.

分析 根据角平分线的定义可得∠CBP=$\frac{1}{2}$∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=$\frac{1}{2}$∠A,代入数据计算即可得解.

解答 解:∵BP平分∠ABC,
∴∠CBP=$\frac{1}{2}$∠ABC,
∵CP平分△ABC的外角,
∴∠DCP=$\frac{1}{2}$∠ACD=$\frac{1}{2}$(∠A+∠ABC)=$\frac{1}{2}$∠A+$\frac{1}{2}$∠ABC,
在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=$\frac{1}{2}$∠ABC+∠P,
∴$\frac{1}{2}$∠A+$\frac{1}{2}$∠ABC=$\frac{1}{2}$∠ABC+∠P,
∴∠P=$\frac{1}{2}$∠A=$\frac{1}{2}$×40°=20°.

点评 本题考查了三角形的外角性质的应用,能正确运用性质进行推理和计算是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

19.解方程组:
(1)$\left\{\begin{array}{l}x-y=1\\ 3(x-y)+2y=5\end{array}$
(2)$\left\{\begin{array}{l}{11x+12y=13}\\{14x+15y=16}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,点E、F分别在正方形ABCD的边BC、CD上,且BE=CF.
求证:(1)AE=BF;(2)AE⊥EF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.若函数y=x${\;}^{{m}^{2}-2}$是反比例函数,则m=±1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解下列方程
(1)$\frac{6}{x-2}$=$\frac{1}{x+3}$;
(2)$\frac{x+1}{x-1}$-$\frac{4}{{x}^{2}-1}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,设△ABC的面积为S,周长为l.
(1)填表:
三边a、b、ca+b-c$\frac{S}{l}$
3、4、52$\frac{1}{2}$
5、12、1341
8、15、176$\frac{3}{2}$
(2)如果a+b-c=m,观察上表猜想:$\frac{S}{l}$=$\frac{m}{4}$ (用含有m的代数式表示).
(3)证明(2)中的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图1,在平行四边形ABCD中,对角线AC,BD相交于点O,过O点作直线EF,分别交BC,AD于点E,F.
(1)证明:OF=OE;
(2)小明从图1找到了一种将平行四边形面积平分的方法.图2是一块纸片,其形状是一个大的平行四边形在一角剪去一个小的平行四边形,小明发现可以用一条直线将其分割成面积相等的两部分,请你帮助小明设计三种不同的分割方案.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.数学活动课上,老师给出如下问题:如图,将等腰直角三角形纸片沿斜边上的高AC剪开,得到等腰直角三角形△ABC与△EFD,将△EFD的直角顶点在直线BC上平移,在平移的过程中,直线AC与直线DE交于点Q,让同学们探究线段BQ与AD的数量关系和位置关系.
请你阅读下面交流信息,解决所提出的问题.
展示交流:
小敏:满足条件的图形如图甲所示图形,延长BQ与AD交于点H.我们可以证明△BCQ≌△ACD,从而易得BQ=AD,BQ⊥AD.
小慧:根据图甲,当点F在线段BC上时,我们可以验证小敏的说法是正确的.但当点F在线段CB的延长线上(如图乙)或线段CB的反向延长线上(如图丙)时,我对小敏说法的正确性表示怀疑.
(1)请你帮助小慧进行分析,小敏的结论在图乙、图丙中是否成立?请说明理由.
(选择图乙或图丙的一种情况说明即可).
(2)小慧思考问题的方式中,蕴含的数学思想是分类讨论思想.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在正n边形(n为整数,且n≥4)绕点A顺时针旋转60°后,发现旋转前后两图形有另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交旋转前的图形于点P,连接PO,我们称∠OAB为正n边形的“叠弦角”,△AOP为“叠弦三角形”.以下说法,正确的是①.(填番号)
①在图1中,△AOB≌△AOD';         
②在图2中,正五边形的“叠弦角”的度数为360°;
③“叠弦三角形”不一定都是等边三角形; ④正n边形的“叠弦角”的度数为60°-$\frac{180°}{n}$.

查看答案和解析>>

同步练习册答案