精英家教网 > 初中数学 > 题目详情

【题目】为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:

(1)这次随机抽取的学生共有多少人?

(2)请补全条形统计图;

(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?

【答案】(1)40;(2)见解析;(3)480

【解析】

试题(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷比例来计算;

(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;

(3)用样本估计总体.用总人数1200乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.

试题解析:解:(1)这次随机抽取的学生共有:20÷50%=40(人);

(2)B等级的人数是:40×27.5%=11人,如图:

(3)根据题意得:×1200=480(人),

答:这次九年级学生期末数学考试成绩为优秀的学生人数大约有480

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中 ,∠A=∠B,D、E是边AB上的点,DG∥AC,EF∥BC,DG、EF相 交于点H.

(1)∠HDE与∠HED是否相等?并说明理由.

解:∠HDE=∠HED.理由如下:

∵DGAC(已知)

                 

EFBC (已知)

            

又∵∠A=∠B (已知)

.

(2)如果∠C=90°,DG、 EF有何位置关系?并仿照 (1)中的解答方法说明理由.

解:        .理由如下:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】汽车专卖店销售某种型号的汽车.已知该型号汽车的进价为10万元/辆,销售一段时间后发现:当该型号汽车售价定为15万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出2辆.

1)若要平均每周售出汽车不低于15辆,该汽车的售价最多定为多少万元?

2)该店计划下调售价,尽可能增加销量,减少库存,但要确保平均每周的销售利润为40万元,每辆汽车的售价定为多少合适?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了传承中华优秀传统文化,某校学生会组织了一次全校1200名学生参加的汉字听写大赛,并设成绩优胜奖.

赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中100名学生的成绩作为样本进行整理,得到下列不完整的统计图表:

成绩x/

频数

频率

50≤x60

10

0.10

60≤x70

25

0.25

70≤x80

30

b

80≤x90

a

0.20

90≤x≤100

15

0.15

成绩在70≤x80这一组的是:

70 70 71 71 71 72 72 73 73 73 73 75 75 75 75 76 76 76 76 76 76 76 76 77 77 78 78 78 79 79

请根据所给信息,解答下列问题:

1a   b   

2)请补全频数分布直方图;

3)这次比赛成绩的中位数是   

4)若这次比赛成绩在78分以上(含78分)的学生获得优胜奖,则该校参加这次比赛的1200名学生中获优胜奖的约有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与抛物线相交于AB两点,且点A1,-4)为抛物线的顶点,点Bx轴上。

1)求抛物线的解析式;

2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;

3)若点Qy轴上一点,且△ABQ为直角三角形,求点Q的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】设抛物线F的解析式为:y2x24nx+2n2+nn为实数.

1)求抛物线F顶点的坐标(用n表示),并证明:当n变化时顶点在一条定直线l上;

2)如图,射线m是(1)中直线lx轴正半轴夹角的平分线,点MN都在射线m上,作MAx轴、NBx轴,垂足分别为点A、点B(点A在点B左侧),当MA+NBMN时,试判断是否为定值,若是,请求出定值;若不是,说明理由.

3)已知直线ykx+b与抛物线F中任意一条都相截,且截得的长度都为,求这条直线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,以点AB为直径的⊙O分别与ACBC交于点ED,且BD=CD

1)求证:∠B=∠C

2)过点DDFOD,过点FFHAB.若AB=5CD=,求AH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,四边形ABCD为矩形,点OAC的中点,过点O的一直线分别与ABCD交于点EF,连接BFAC于点M,连接DEBO,若∠COB60°FOFC,则下列结论:①FBOCOMCM;②EOB≌△CMB;③四边形EBFD是菱形;④MBOE32,其中正确结论是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,边AB的垂直平分线交AD于点E,交CB的延长线于点F,连接AF,BE.

(1)求证:AGE≌△BGF;

(2)试判断四边形AFBE的形状,并说明理由.

查看答案和解析>>

同步练习册答案