精英家教网 > 初中数学 > 题目详情

【题目】如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交ABAD于点MN②分别以MN为圆心,以大于MN的长为半径作弧,两弧相交于点P③作AP射线,交边CD于点Q,若DQ=2QCBC=3,则平行四边形ABCD周长为________

【答案】15

【解析】

试题解析:∵由题意可知,AQ是∠DAB的平分线,

∴∠DAQ=∠BAQ

∵四边形ABCD是平行四边形,

CDABBC=AD=3,∠BAQ=∠DQA

∴∠DAQ=∠DAQ

∴△AQD是等腰三角形,

DQ=AD=3

DQ=2QC

QC=DQ=

CD=DQ+CQ=3+=

∴平行四边形ABCD周长=2DC+AD)=2×(+3)=15

故答案为:15

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】解不等式组 ,并将解集在数轴上表示.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.

(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场出售一批进价为2元的贺卡,在市场营销中发现此商品的日销售单价x(元)与日销售量y(个)之间有如下关系:

日销售单价x(元)

3

4

5

6

日销售量y(个)

20

15

12

10

1)猜测并确定yx之间的函数关系式,并画出图象;

2)设经营此贺卡的销售利润为W元,求出Wx之间的函数关系式,

3)若物价局规定此贺卡的售价最高不能超过10元/个,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系,并说明理由.

(1)如图①,AB∥CD,BE∥DF,∠1与∠2的关系是

证明:

(2)如图②,AB∥CD,BE∥DF,∠1与∠2的关系是

证明:

(3)经过上述证明,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角

(4)若这两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE∥BF∠1与∠2互补.

1)试说明:FG∥AB;

2)若∠CFG=60°∠2=150°,则DEAC垂直吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】是某汽车行驶的路程S(km)与时间t(min)的函数关系图.观察图中所提供的信息,解答下列问题:

1)汽车在前9分钟内的平均速度是多少?

2)汽车在中途停了多长时间?

316≤t≤30时,求St的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图(1),已知:在中,,直线经过点直线直线,垂足分别为点.证明:

(2)如图(2),将(1)中的条件改为:在中,三点都在直线上,且,其中为任意锐角或钝角.请问结论是否仍然成立?如成立;请你给出证明;若不成立,请说明理由.

3)拓展与应用:如图(3),是直线上的两动点三点互不重合),点平分线上的一点,且均为等边三角形,连接,若,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),在平面直角坐标系中,A(a,0),C(b,2),过C作CBx轴,且满足(a+b)2+=0.

(1)求三角形ABC的面积.

(2)若过B作BDAC交y轴于D,且AE,DE分别平分CAB,ODB,如图2,求AED的度数.

(3)在y轴上是否存在点P,使得三角形ABC和三角形ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案