精英家教网 > 初中数学 > 题目详情

【题目】在一个不透明的袋子里装有3个黑球和若干白球,它们除颜色外都相同.在不允许将球倒出来数的前提下,小明为估计其中白球数,采用如下办法:随机从中摸出一球,记下颜色后放回袋中,充分摇匀后,再随机摸出一球,记下颜色,…不断重复上述过程.小明共摸100次,其中20次摸到黑球.根据上述数据,小明估计口袋中白球大约有()
A.10个
B.12 个
C.15 个
D.18个

【答案】B
【解析】解答:∵小明共摸了100次,其中20次摸到黑球,
∴有80次摸到白球,∴摸到黑球与摸到白球的次数之比为1:4,
∴口袋中黑球和白球个数之比为1:4,3÷ =12(个).
故选B.
分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出算式解答.
【考点精析】解答此题的关键在于理解用频率估计概率的相关知识,掌握在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】常州每年举行一次“一袋牛奶的暴走”公益活动,用步行的方式募集善款,其中挑战型路线”的起点是淹城站,并沿着规定的线路到达终点吾悦国际站.甲、乙两组市民从起点同时出发,已知甲组的速度为6km/h,乙组的速度为5km/h,当甲组到达终点后,立即以3km/h的速度按原线路返回,并在途中的P站与乙组相遇,P站与吾悦国际站之间的路程为1.5km

(1)求“挑战型路线”的总长;

(2)当甲组到达终点时,乙组离终点还有多少路程?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小兰和小潭分别用掷A、B两枚骰子的方法来确定P(x,y)的位置,她们规定:小兰掷得的点数为x,小谭掷得的点数为y,那么,她们各掷一次所确定的点落在已知直线y=-2x+6上的概率为()
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“十一”黄金周期间,小明要与父母外出游玩,带了2件上衣和3条长裤(把衣服和裤子分别装在两个袋子里),上衣颜色有红色、黄色,长裤有红色、黑色、黄色.
问题为:
(1)小明随意拿出一条裤子和一件上衣配成一套,用(画树状图或列表格)中的一种列出所有可能出现结果;
(2)配好一套衣服,小明正好拿到黑色长裤的概率是多少;
(3)他任意拿出一件上衣和一条长裤穿上的颜色正好相同的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB内部有三条射线,OE平分∠AODOC平分∠BOD

(1)若∠AOB=90°,求∠EOC的度数;

(2)若∠AOB,求∠EOC的度数;

(3)如果将题中平分的条件改为∠EOA=AODDOC=DOBAOD=50°,且∠AOB=90°,求∠EOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某玩具店进了一排黑白塑料球,共5箱,每箱的规格、数量都相同,其中每箱中装有黑白两种颜色的塑料球共3000个,为了估计每箱中两种颜色球的个数,随机抽查了一箱,将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到黑球的概率在0.8附近波动,则此可以估计这批塑料球中黑球的总个数,请将黑球总个数用科学记数法表示约为个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料: 在学习《圆》这一章时,老师给同学们布置了一道尺规作图题:


小敏的作法如下:
如图,
①链接op,做线段op的垂直平分线MN,交OP于点C
②以点C为圆心,CO的长为半径作圆,交⊙O于A、B两点
③作直线PA、PB所以直线PA,PB就是所求的切线

老师认为小敏的作法正确.
请回答:连接OA,OB后,可证∠OAP=∠OBP=90°,其依据是;由此可证明直线PA,PB都是⊙O的切线,其依据是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,⊙O的半径为1,P是坐标系内任意一点,点P到⊙O的距离SP的定义如下:若点P与圆心O重合,则SP为⊙O的半径长;若点P与圆心O不重合,作射线OP交⊙O于点A,则SP为线段AP的长度. 图1为点P在⊙O外的情形示意图.

(1)若点B(1,0),C(1,1), ,则SB=;SC=;SD=
(2)若直线y=x+b上存在点M,使得SM=2,求b的取值范围;
(3)已知点P,Q在x轴上,R为线段PQ上任意一点.若线段PQ上存在一点T,满足T在⊙O内且ST≥SR , 直接写出满足条件的线段PQ长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图,下列4个结论中结论正确的有
①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0.

查看答案和解析>>

同步练习册答案