【题目】如图,以Rt△ABC的直角边AB为直径作⊙O,交斜边AC于点D,点E为OB的中点,连接CE并延长交⊙O于点F,点F恰好落在的中点,连接AF并延长与CB的延长线相交于点G,连接OF.
(1)求证:OF=BG;
(2)若AB=4,求DC的长.
【答案】(1)见解析 (2).
【解析】(1)直接利用圆周角定理结合平行线的判定方法得出FO是△ABG的中位线,即可得出答案;
(2)首先得出△FOE≌△CBE(ASA),则BC=FO=AB=2,进而得出AC的长,再利用相似三角形的判定与性质得出DC的长.
(1)证明:∵AB为⊙O的直径
∴+=180°
∵点F是的中点,
∴==90°,
∴∠AOF=90°
又∵OA=OF=AB
∴∠OAF=∠OFA=45°
∵∠ABC=∠ABG=90
∴∠OAF=∠G=45°
∴AB=BG
∴OF=BG.
(2)在△FOE和△CBE中,
∠FOE=∠CBE,OE=BE,∠OEF=∠BEC,
∴△FOE≌△CBE(ASA).
∴BC=FO=AB=2.
∴AC==2.
连接DB.
∵AB为⊙O直径,∴∠ADB=90°.
由面积法可知,AB×BC= AC×BD
∴BD=.
由勾股定理,得DC=.
科目:初中数学 来源: 题型:
【题目】如图,已知线段a,h,作等腰三角形ABC,使AB=AC,且BC=a,BC边上的高AD=h.张红的作法是:(1)作线段BC=a;(2)作线段BC的垂直平分线MN,MN与BC相交于点D;(3)在直线MN上截取线段h;(4)连接AB,AC.△ABC为所求作的等腰三角形.上述作法的四个步骤中,有错误的一步你认为是( )
A.(1)
B.(2)
C.(3)
D.(4)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com