【题目】二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc<0;②2a﹣b=0;③4ac﹣b2<8a;④3a+c<0;⑤a﹣b<m(am+b),其中正确的结论的个数是( )
A.1B.2C.3D.4
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴交于点A(﹣3,0)和点B,与y轴交于点C (0,2).
(1)求抛物线的表达式,并用配方法求出顶点D的坐标;
(2)若点E是点C关于抛物线对称轴的对称点,求tan∠CEB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的解析式是y=﹣x2+2x+3.
(1)用配方法将该二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标;
(2)在图中画出该二次函数的图象(不需要列表),并写出该图象与x轴的交点;
(3)当0≤x<3时,直接写出y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线F1:y=ax2+bx﹣1(a>1)与x轴交于点A、B(点A在点B的左侧),与y轴于点C,已知点A的坐标为(﹣,0),
(1)直接写出b= (用含a的代数式表示);
(2)求点B的坐标;
(3)设抛物线F1的顶点为P1,将该抛物线平移后得到抛物线F2,抛物线F2的顶点P2满足P1P2∥BC,并且抛物线F2过点B,
①设抛物线F2与直线BC的另一个交点为D,判断线段BC与CD的数量关系(不需证明),并直接写出点D的坐标;
②求出抛物线F2与y轴的交点纵坐标的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=4,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形网格中,点A,B,C,D都在这些小正方形上,AB与CD相交于点O,则tan∠AOD等于( )
A. B. 2C. 1D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com