精英家教网 > 初中数学 > 题目详情
7.已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D.
(1)如图1,求证:BD=ED;
(2)如图2,AO为⊙O的半径,若BC=6,sin∠BAC=$\frac{3}{5}$,求OE的长.

分析 (1)连接BE,由三角形的内心得出∠ABE=∠CBE,∠BAD=∠CAD,由圆周角定理得出∠DBC=∠CAD,得出∠DBC=∠BAD,再由三角形的外角性质得出∠DBE=∠DEB,即可得出结论.
(2)连接OB,由三角形的内心性质得出∠BAD=∠CAD,由圆周角定理得出$\widehat{BD}=\widehat{CD}$,由垂径定理得出BF=$\frac{1}{2}$BC=3,由圆周角定理得出∠BOD=2∠BAD=∠BAC,由三角函数得出OB=5,再由勾股定理求出OF,得出DF,再由勾股定理求出BD,得出ED,即可得出结果.

解答 (1)证明:连接BE,如图1所示:
∵E是△ABC的内心,
∴∠ABE=∠CBE,∠BAD=∠CAD,
∵∠DBC=∠CAD,
∴∠DBC=∠BAD,
∵∠DBE=∠DBC+∠CBE,∠DEB=∠BAD+∠ABE,
∴∠DBE=∠DEB,
∴BD=ED;
(2)解:连接OB,如图2所示:
∵点E是△ABC的内心,
∴∠BAD=∠CAD,
∴$\widehat{BD}=\widehat{CD}$,
∴BF=$\frac{1}{2}$BC=3,∠BOD=2∠BAD=∠BAC,
∵AE过点O,
∴AD⊥BC,
∴∠EFB=90°,
∴sin∠BAC=sin∠BOD=$\frac{BF}{OB}$=$\frac{3}{5}$,
∴OB=5,
∴OD=5,
∴OF=$\sqrt{O{B}^{2}-B{F}^{2}}$=$\sqrt{{5}^{2}-{3}^{2}}$=4,
∴DF=OD-OF=1,
∴BD=$\sqrt{B{F}^{2}+D{F}^{2}}$=$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$,
由(1)得:ED=BD=$\sqrt{10}$,
∴OE=OD-ED=5-$\sqrt{10}$.

点评 本题考查了三角形的内心性质、圆周角定理、三角形的外角性质、等腰三角形的判定、勾股定理、垂径定理、三角函数等知识;本题有一定难度,特别是(2)中,需要运用垂径定理和两次运用勾股定理才能得出结果.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

17.已知:a=$\frac{1}{2-\sqrt{3}}$,b=$\frac{1}{2+\sqrt{3}}$,则a与b的关系是(  )
A.ab=1B.a+b=0C.a-b=0D.a2=b2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解方程(组):
(1)$\left\{\begin{array}{l}{2x-y=5①}\\{x-1=\frac{1}{2}(2y-1)②}\end{array}\right.$  
(2)$\frac{x+1}{x-1}-\frac{4}{{{x^2}-1}}=1$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:
①|-2|-(2-π)0+($\frac{1}{3}$)-1+(-2)3
②(a+2b-3c)(a-2b+3c)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.已知点P(2a-6,a+1),若点P在坐标轴上,则点P的坐标为(-8,0)或(0,4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.某商场秋季计划购进一批进价为每条40元的围巾进行销售:
探究:根据销售经验,应季销售时,若每条围巾的售价为60元,则可售出400条;若每条围巾的售价每提高1元,销售量相应减少10条.
(1)假设每条围巾的售价提高x元,那么销售每条围巾获得的利润是20+x,销售量是400-10x(用含x的代数式表示)
(2)设应季销售利润为y元,请写y与x的函数关系式:并求出应季销售利润为8000元时每条围巾的售价.
拓展:根据销售经验,过季处理时,若每条围巾的售价定为30元亏本销售,可售出50条;若每条围巾的售价每降低1元,销售量相应增加5条.
(1)若剩余100条围巾需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金;若是亏损金额最小,每条围巾的售价应是20元.
(2)若过季需要处理的围巾共m条,且100≤m≤300,过季亏损金额最小是40m-2000元(用含M的代数式表示)
延伸:若商场共购进了500条围巾且销售情况满足上述条件,如果应季销售利润在不低于8000元的情况下:
(1)没有售出的围巾共m条,则m的取值范围是:100≤m≤300
(2)要使最后的总利润(销售利润=应季销售利润-过季亏损金额)最大,则应季销售的售价是60元.
参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(-$\frac{b}{2a}$,$\frac{4ac-{b}^{2}}{4a}$)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在正方形ABCD中,AE=AD,∠DAE=60°,BE交AC于点F.
(1)求证:AF+BF=EF;
(2)若AB=$\sqrt{6}$,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.若多项式x2-2kx+16=0是一个完全平方式,则k=±4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,已知A(-2,4)和B(1,0)都在抛物线$y=-\frac{4}{3}{x^2}-\frac{8}{3}x+4$
上,向右平移该抛物线,记平移后点A的对应点为A′,点B的对应点为B′,且四边形AA′B′B为菱形.
(1)求A′、B′的坐标;
(2)求平移后的抛物线的表达式;
(3)设平移后的抛物线的对称轴交直线AB′于点C,点D在x轴上,当△B′CD与△ABC相似时,求点D的坐标.

查看答案和解析>>

同步练习册答案