ÏÈÔĶÁ£¬ÔÙ½â´ð£º
·½³Ìx2-3x-4=0µÄ¸ùÊÇ£ºx1=-1£¬Ôò£¬x1x2=-4£»
·½³Ì3x2+10x+8=0µÄ¸ùÊÇ£ºx1=-2£¬x2=-
4
3
£¬Ôòx1+x2=-
10
3
£¬x1x2=
8
3
£®
£¨1£©Èôx1£¬x2ÊÇ·½³Ìax2+bx+c=0µÄ¸ù£¬Ôòx1+x2=
-
b
a
-
b
a
£¬x1x2=
c
a
c
a
£»£¨ÓÃa¡¢b¡¢c±íʾ£©
£¨2£©Èç¹ûx1£¬x2ÊÇ·½³Ìx2+x-3=0µÄÁ½¸ö¸ù£¬¸ù¾Ý£¨1£©ËùµÃ½áÂÛ£¬Çó
x
2
1
+
x
2
2
µÄÖµ£®
·ÖÎö£º£¨1£©ÓÉÒÑÖªÖÐÁ½¸ùÖ®ºÍÓëÁ½¸ùÖ®»ýµÄ½á¹û¿ÉÒÔ¿´³ö£¬Á½¸ùÖ®ºÍÕýºÃµÈÓÚÒ»´ÎÏîϵÊýÓë¶þ´ÎÏîϵÊýÖ®±ÈµÄÏà·´Êý£¬Á½¸ùÖ®»ýÕýºÃµÈÓÚ³£ÊýÏîÓë¶þ´ÎÏîϵÊýÖ®±È£¬µÃ³ö¼´¿É£»
£¨2£©ÏÈ°Ñ´úÊýʽx12+x22±äÐÎΪÁ½¸ùÖ®»ý»òÁ½¸ùÖ®ºÍµÄÐÎʽ£¬È»ºóÓëÁ½¸ùÖ®ºÍ¹«Ê½¡¢Á½¸ùÖ®»ý¹«Ê½Çó³ö¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÒÑÖªµÃ³ö£ºx1+x2=-
b
a
£¬x1x2=
c
a
£¬
¹Ê´ð°¸Îª£º-
b
a
£¬
c
a
£»

£¨2£©¡ßx1£¬x2ÊÇ·½³Ìx2+x-3=0µÄÁ½¸ö¸ù£¬
¡àx1+x2=-
b
a
=-1£¬x1x2=
c
a
=-3£¬
¡à
x
2
1
+
x
2
2
=£¨x1+x2£©2-2x1x2=1+6=7£®
µãÆÀ£º±¾Ì⿼²éÁ˸ùÓëϵÊýµÄ¹Øϵ£¬½«¸ùÓëϵÊýµÄ¹ØϵÓë´úÊýʽ±äÐÎÏà½áºÏ½âÌâÊÇÒ»ÖÖ¾­³£Ê¹ÓõĽâÌâ·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁ£¬ÔÙÌî¿Õ½â´ð£º
·½³Ìx2-3x-4=0µÄ¸ùÊÇ£ºx1=-1£¬x2=4£¬Ôòx1+x2=3£¬x1x2=-4£»
·½³Ì3x2+10x+8=0µÄ¸ùÊÇ£ºx1=-2£¬x2=-
4
3
£¬Ôòx1+x2=-
10
3
£¬x1x2=
8
3
£®
£¨1£©·½³Ì2x2+x-3=0µÄ¸ùÊÇ£ºx1=
 
£¬x2=
 
£¬Ôòx1+x2=
 
£¬x1x2=
 
£»
£¨2£©Èôx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£¬ÇÒa£¬b£¬cΪ³£Êý£©µÄÁ½¸öʵÊý¸ù£¬ÄÇôx1+x2£¬x1x2ÓëϵÊýa£¬b£¬cµÄ¹ØϵÊÇ£ºx1+x2=
 
£¬x1x2=
 
£»
£¨3£©Èç¹ûx1£¬x2ÊÇ·½³Ìx2+x-3=0µÄÁ½¸ö¸ù£¬¸ù¾Ý£¨2£©ËùµÃ½áÂÛ£¬Çóx12+x22µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁ£¬ÔÙÌî¿Õ½â´ð
Ò»Ôª¶þ´Î·½³Ìax2+bx+c=o£¨a¡Ù0£©µÄÇó¸ù¹«Ê½ÊÇx=
-b¡À
b2-4ac
2a
£¨b2-4ac¡Ý0£©£¬ÏÔÈ»Õâ¸öÒ»Ôª¶þ´Î·½³ÌµÄ¸ùµÄÇé¿öÓÉb2-4acÀ´¾ö¶¨£¬ÎÒÃÇ°Ñb2-4ac½Ð×öÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0µÄ¸ùµÄÅбðʽ£¬Ó÷ûºÅ¡°¡÷¡±À´±íʾ£®
£¨1£©µ±¡÷£¾0ʱ£¬Ò»Ôª¶þ´Î·½³Ìax2+bx+c=0ÓÐÁ½¸ö
 
¸ù
µ±¡÷=0ʱ£¬Ò»Ôª¶þ´Î·½³Ìax2+bx+c=0ÓÐÁ½¸ö
 
¸ù
µ±¡÷£¼0ʱ£¬Ò»Ôª¶þ´Î·½³Ìax2+bx+c=0
 
¸ù

£¨2£©ÒÑÖª¹ØÓÚxµÄ·½³Ì£¬2x2-£¨4k+1£©x+2k2-1=0£¬
ÆäÖС÷=[-£¨4k+1£©]2-4¡Á2£¨2k2-1£©=16k2+8k+1-16k2+8=8k+9
¢Ùµ±8k+9£¾0ʱ¼´k£¾-
9
8
ʱ£¬Ô­·½³ÌÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù
¢Úµ±8k+9=0ʱ£¬¼´k=-
9
8
ʱ£¬Ô­·½³ÌÓÐÁ½¸öÏàµÈµÄʵÊý¸ù
¢Ûµ±8k+9£¼0ʱ£¬¼´k£¼-
9
8
ʱ£¬Ô­·½³ÌûÓÐʵÊý¸ù
Çë¸ù¾ÝÔĶÁ²ÄÁϽâ´ðÏÂÃæÎÊÌâ
ÇóÖ¤£º¹ØÓÚxµÄ·½³Ìx2-£¨2k+1£©x+k-1=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁ£¬ÔÙÌî¿Õ½â´ð£º
·½³Ìx2-3x-4=0µÄ¸ùΪx1=-1£¬x2=4£¬x1+x2=3£¬x1x2=-4£»
·½³Ì3x2+10x+8=0µÄ¸ùΪx1=-2£¬x2=-
4
3
£¬x1+x2=-
10
3
£¬x1x2=
8
3
£®
£¨1£©·½³Ì2x2+x-3=0µÄ¸ùÊÇx1=
-
3
2
-
3
2
£¬x2=
1
1
£¬x1+x2=
-
1
2
-
1
2
£¬x1x2=
-
3
2
-
3
2
£®
£¨2£©Èôx1£¬x2ÊǹØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+c=0£¨a¡Ù0£©µÄÁ½¸öʵÊý¸ù£¬ÄÇôx1+x2£¬x1x2ÓëϵÊýa¡¢b¡¢cµÄ¹ØϵÊÇ£ºx1+x2=
-
b
a
-
b
a
£¬x1x2=
c
a
c
a
£®
£¨3£©µ±ÄãÇáËɽâ¾öÒÔÉÏÎÊÌâʱ£¬ÊÔÒ»ÊÔÏÂÃæÕâ¸öÎÊÌ⣺¼×¡¢ÒÒÁ½Í¬Ñ§½â·½³Ìx2+px+q=0ʱ£¬¼×¿´´íÁËÒ»´ÎÏîϵÊý£¬µÃ¸ù2ºÍ7£¬ÒÒ¿´´íÁ˳£ÊýÏµÃ¸ù1ºÍ-10£¬ÔòÔ­·½³ÌÖеÄp¡¢qµ½µ×ÊǶàÉÙ£¿ÄãÄÜд³öÔ­À´µÄ·½³ÌÂð£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÏÈÔĶÁ£¬ÔÙÌî¿Õ£¬ÔÙ½â´ðºóÃæµÄÏà¹ØÎÊÌ⣺
£¨1£©·½³Ìx2-x-2=0µÄ¸ùÊÇx1=2£¬x2=-1£¬Ôòx1+x2=1£¬x1•x2=-2
£¨2£©·½³Ì2x2-3x-5=0µÄ¸ùÊÇx1=-1£¬x2=
5
2
£¬Ôòx1+x2=
3
2
£¬x1x2=-
5
2

£¨3£©·½³Ì3x2-2x-1=0µÄ¸ùÊÇx1=
-
1
3
-
1
3
£¬x2=
1
1
£¬Ôòx1+x2=
2
3
2
3
£¬x1•x2=
-
1
3
-
1
3
£®
¸ù¾Ý¶ÔÒÔÉÏ£¨1£©¡¢£¨2£©¡¢£¨3£©µÄ¹Û²ì¡¢Ë¼¿¼£¬ÄãÄÜ·ñ²Â³ö£ºÈç¹û¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìmx2+nx+p=0£¨m¡Ù0ÇÒm¡¢n¡¢pΪ³£ÊýÇÒn2-4mp¡Ý0£©µÄÁ½¸ùx1¡¢x2£¬ÄÇôx1+x2¡¢x1•x2ÓëϵÊým¡¢n¡¢pÓÐʲô¹Øϵ£¿Çëд³öÄãµÄ²ÂÏ벢˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸