精英家教网 > 初中数学 > 题目详情
如图,在Rt△ABC中,∠C=90°,AD是∠BAC的角平分线,以AB上一点O为圆心,AD为弦作⊙O.
(1)在图中作出⊙O(不写作法,保留作图痕迹);
(2)求证:BC为⊙O的切线;
(3)若AC=3,tanB=
3
4
,求⊙O的半径长.
(1)如图,(2分)

(2)证明:连接OD.
∵OA=OD,
∴∠1=∠2,
∵∠1=∠3,
∴∠2=∠3,
∴ODAC.(3分)
又∵∠C=90°,∴∠ODB=90°,(5分)
∴BC是⊙O的切线;(6分)

(3)在Rt△ABC中,AC=3,tanB=
3
4

∴BC=4,
∴AB=
32+42
=5,(7分)
∵ODAC,
∴△OBD△ABC,(8分)
所以
OB
AB
=
OD
AC
5-OA
5
=
OA
3

∴OA=OD=
15
8

∴⊙的半径为
15
8

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知线段a、b(a>b),求作线段c,使c2=a2-b2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

我们做一个拼图游戏:用等腰直角三角形拼正方形.请按下面规则与程序操作:
第一次:将两个全等的等腰直角三角形拼成一个正方形;
第二次:在前一个正方形的四条边上再拼上四个全等的等腰直角三角形(等腰直角三角形的斜边与正方形的边长相等),形成一个新的正方形;以后每次都重复第二次的操作
(1)请你在第一次拼成的正方形的基础上,画出第二次和第三次拼成的正方形图形;
(2)若第一次拼成的正方形的边长为a,请你根据操作过程中的观察与思考填写下表:
操作次数(n)1234n
每次拼成的正方形面积(s)a2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在图1-5中,正方形ABCD的边长为a,等腰直角三角形FAE的斜边AE=2b,且边AD和AE在同一直线上.
操作示例:
当2b<a时,如图1,在BA上选取点G,使BG=b,连接FG和CG,裁掉△FAG和△CGB并分别拼接到△FEH和△CHD的位置构成四边形FGCH.
思考发现:
小明在操作后发现:该剪拼方法就是先将△FAG绕点F逆时针旋转90°到△FEH的位置,易知EH与AD在同一直线上.连接CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,从而又可将△CGB绕点C顺时针旋转90°到△CHD的位置.这样,对于剪拼得到的四边形FGCH(如图1),过点F作FM⊥AE于点M(图略),利用SAS公理可判断△HFM≌△CHD,易得FH=HC=GC=FG,∠FHC=90°.进而根据正方形的判定方法,可以判断出四边形FGCH是正方形.
实践探究:
(1)正方形FGCH的面积是______;(用含a,b的式子表示)
(2)类比图1的剪拼方法,请你就图2-图4的三种情形分别画出剪拼成一个新正方形的示意图.

联想拓展:
小明通过探究后发现:当b≤a时,此类图形都能剪拼成正方形,且所选取的点G的位置在BA方向上随着b的增大不断上移;当b>a时,如图5的图形能否剪拼成一个正方形?若能,请你在图中画出剪拼的示意图;若不能,简要说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);
(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:有一内角为60°的平行四边形空地,其两边之比为2:3,计划用于建造一个花园,设计要求:花园面积为空地面积的一半.
(1)建造的花园形状为平行四边形(图甲);
(2)建造的花园形状为等腰三角形(图乙);
(3)建造的花园形状为等腰梯形(图丙);
请按上述要求在对应图中画出花园的设计图.(要求:保留作图痕迹,不要求写出画法)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在一次“寻宝”游戏中,寻宝人已经找到了A(-1,2)和B(1,2)点,已知宝藏在(4,3)点,请你确定直角坐标系并找出“宝藏”位置,说明你的方法,并画出示意图.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知A(-3,1),B(-3,-2),C(2,-2),D(2,3).
(1)请在如图所示中的直角坐标系中指出A,B,C,D各点,并依次连接.
(2)求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

请在同一个数轴上用尺规作出-
2
3
分别所对应的点.

查看答案和解析>>

同步练习册答案