【题目】如图.在直角梯形ABCD中,AD//BC,∠B=90°,AG//CD交BC于点G,点E、F分别为AG、CD的中点,连接DE、FG.
(1)求证:四边形DEGF是平行四边形;
(2)如果点G是BC的中点,且BC=12,DC=10,求四边形AGCD的面积.
【答案】见解析;48.
【解析】
试题根据AD∥BC ,AG∥CD得到四边形AGCD是平行四边形,从而说明AG=CD,根据中点得出DF=GE,然后得出平行四边形;根据点G是BC的中点得出BG=6,根据平行四边形得出DC=10,根据Rt△ABG的勾股定理得出AB的值,然后计算面积.
试题解析:(1)证明: ∵AD∥BC ,AG∥CD ∴四边形AGCD是平行四边形 ∴AG=CD
∵点E、F分别为AG、CD的中点 ∴DF=GE= ∴DF=GE 又DF∥GE
∴四边形DEGF是平行四边形.
(2)∵点G是BC的中点,BC=12, ∴BG=CG==6
∵四边形AGCD是平行四边形DC=10 AG=DC=10
在Rt△ABG中根据勾股定理得:AB=8 ∴四边形AGCD的面积为48.
科目:初中数学 来源: 题型:
【题目】已知:关于x的一元二次方程x2﹣(2m+3)x+m2+3m+2=0.
(1)已知x=2是方程的一个根,求m的值;
(2)以这个方程的两个实数根作为△ABC中AB、AC(AB<AC)的边长,当BC=时,△ABC是等腰三角形,求此时m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直线上摆放着三个正方形
(1)如图1,已知水平放置的两个正方形的边长依次是,斜着放置的正方形的面积_ ;两个直角三角形的面积之和为____ (均用表示)
(2)如图2,小正方形面积, 斜着放置的正方形的面积,求图中两个钝角三角形的面积_ ;_
(3)图3是由五个正方形所搭成的平面图,与分别表示所在地三角形与正方形的面积,试写出_ ;_ .(均用表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,防洪大堤的横断面是梯形,背水坡AB的坡比i=1:,且AB=30m,李亮同学在大堤上A点处用高1.5m的测量仪测出高压电线杆CD顶端D的仰角为30°,己知地面BC宽30m,求高压电线杆CD的高度(结果保留三个有效数字,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某网店销售单价分别为元/筒、元/筒的甲、乙两种羽毛球.根据消费者需求,该网店决定用不超过元购进甲、乙两种羽毛球共简.且甲种羽毛球的数量大于乙种羽毛球数量的.已知甲、乙两种羽毛球的进价分别为元/筒、元/筒。若设购进甲种羽毛球简.
(1)该网店共有几种进货方案?
(2)若所购进羽毛球均可全部售出,求该网店所获利润(元)与甲种羽毛球进货量(简)之间的函数关系式,并求利润的最大值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠ABC=90°,AD∥BC,以B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过点C作CF⊥BE,垂足为F.若AB=6,BC=10,则EF的长为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一位运动员在距篮下4m处跳起投篮,球运行的路线是抛物线,当球运行的水平距离是2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.
(1)建立如图所示的平面直角坐标系,求抛物线的解析式.
(2)该运动员身高1.8m,在这次跳投中,球在头顶上0.25m处出手,
问:球出手时,他距离地面的高度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80m的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC的长度为xm,矩形区域ABCD的面积为ym2.
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)x为何值时,y有最大值?最大值是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com