精英家教网 > 初中数学 > 题目详情

关于x的方程x2+mx-9=0和x2-3x+m2+6m=0有公共根,则m的值为________.

-3,0,-4.5
分析:设这个公共根为α,那么根据两根之和的表达式,可知方程x2+mx-9=0的两根为α、-m-α;方程x2-3x+m2+6m=0的两根为α、3-α.再根据两根之积的表达式,可知α(-m-α)=-9,α(3-α)=m2+6m,然后对两式整理,用α表示m,再代入其中一个方程消掉α,求解即可得到m的值.
解答:设这个公共根为α.
则方程x2+mx-9=0的两根为α、-m-α;方程x2-3x+m2+6m=0的两根为α、3-α,
由根与系数的关系有:α(-m-α)=-9,α(3-α)=m2+6m,
整理得,α2+mα=9①,α2-3α+m2+6m=0②,
②-①得,m2+6m-3α-mα=-9,
即(m+3)2-α(m+3)=0,
(m+3)(m+3-α)=0,
所以m+3=0或m+3-α=0,
解得m=-3或α=m+3,
把α=m+3代入①得,
(m+3)2+m(m+3)=9,
m2+6m+9+m2+3m=9,
m(2m+9)=0,
所以m=0或2m+9=0,
解得m=0或m=-4.5,
综上所述,m的值为-3,0,-4.5.
故答案为:-3,0,-4.5.
点评:本题主要考查了公共根的定义,一元二次方程根与系数的关系及由两个二元二次方程组成的方程组的解法.高次方程组的解法在初中教材中不要求掌握,属于竞赛题型,本题有一定难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如果关于x的方程x2+x-
1
4
k=0
没有实数根,那么k的取值范围是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

用配方法解关于x的方程x2+px=q时,应在方程两边同时加上(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2-2x+k=0的一根是2,则k=
0
0

查看答案和解析>>

科目:初中数学 来源: 题型:

通过观察,发现方程不难求得方程:x+
2
x
=3+
2
3
的解是x1=3,x2=
2
3
x+
2
x
=4+
2
4
的解是x1=4,x2=
2
4
x+
2
x
=5+
2
5
的解是x1=5,x2=
2
5
;…
(1)观察上述方程及其解,可猜想关于x的方程x+
2
x
=a+
2
a
的解是
x1=a,x2=
2
a
x1=a,x2=
2
a

(2)试验证:当x1=a-1,x2=
2
a-1
都是方程x+
2
x
=a+
2
a-1
-1
的解;
(3)利用你猜想的结论,解关于x的方程
x2-x+2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程
x2+4
x(x-2)
-
x
x-2
=
a
x
无解,求a的值?

查看答案和解析>>

同步练习册答案