精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2+bx2x轴交于AB两点,与y轴交于C点,且A(一10).

⑴求抛物线的解析式及顶点D的坐标;

⑵判断ABC的形状,证明你的结论;

⑶点M(m0)x轴上的一个动点,当CM+DM的值最小时,求m的值.

【答案】1)抛物线的解析式为y=x2-x-2

顶点D的坐标为 (, -).

2)△ABC是直角三角形,理由见解析;

3.

【解析】

1)把点A坐标代入抛物线即可得解析式,从而求得顶点坐标;

2)分别计算出三条边的长度,符合勾股定理可知其是直角三角形;

3)作出点C关于x轴的对称点C′,则C′02),OC′=2,连接C′Dx轴于点M,根据轴对称性及两点之间线段最短可知,MC + MD的值最小.

解:(1)∵点A-10)在抛物线y=x2 +bx-2

× (-1 )2 +b× (-1) –2 = 0

解得b =

∴抛物线的解析式为y=x2-x-2.

y=x2-x-2 =(x2 -3x- 4 ) =(x-)2-,

∴顶点D的坐标为 (, -).

2)当x = 0y = -2,

C0-2),OC = 2

y = 0时,x2-x-2 = 0 x1 = -1, x2 = 4

B (4,0)

OA =1, OB = 4, AB = 5.

AB2 = 25, AC2 =OA2 +OC2 = 5, BC2 =OC2 +OB2 = 20,

AC2 +BC2 =AB2.

∴△ABC是直角三角形.

3)作出点C关于x轴的对称点C,则C02),OC′=2,连接C′Dx轴于点M,根据轴对称性及两点之间线段最短可知,MC +MD的值最小.

解法一:设抛物线的对称轴交x轴于点E.

EDy, ∴∠OC′M=EDM,C′OM=DEM

∴△C′OM∽△DEM.

,∴m=

解法二:设直线C′D的解析式为y =kx +n ,

,解得n = 2.

.

∴当y = 0时,

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.

(1)求证:△ABP∽△PCD;

(2)若AB=10,BC=12,当PD∥AB时,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34cos20°≈0.94tan20°≈0.36

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明同学设计的“过圆外一点作圆的切线”的尺规作图的过程.

已知:如图1外的一点.

求作:过点的切线.

作法:如图2

①连接

②作线段的垂直平分线,直线

③以点为圆心,为半径作圆,交于点

④作直线.

就是所求作的的切线.

根据上述作图过程,回答问题:

1)用直尺和圆规,补全图2中的图形;

2)完成下面的证明:

证明:连接

∵由作图可知的直径,

______)(填依据),

又∵的半径,

就是的切线(______)(填依据).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.

(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;

(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?

(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在ABC中,∠B=90°AB=5cmBC=7cm.P从点A开始沿AB边向点B1cm/s的速度移动,点Q从点B开始沿BC边向点C2cm/s的速度移动.

1)若PQ分别从AB同时出发,那么几秒后PBQ的面积等于4cm2

2)如果PQ分别从AB同时出发,那么几秒后,PQ的长度等于5cm

3)在(1)中,PBQ的面积能否等于7cm2? 请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图将矩形绕点顺时针旋转得矩形,若,则图中阴影部分的面积为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,都是等边三角形,且点ACE在同一直线上,分别交于点FM交于点N.下列结论正确的是_______(写出所有正确结论的序号).

;②;③;④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了开发利用海洋资城,某勘测飞机测量一岛屿两端AB的距高,飞机在距海平面垂直高度为100m的点C处测得端点A的俯角为60°,然后沿着平行于AB的方向水平飞行500m,在点D测得端点B的俯角为45°,则岛屿两端AB的距离为___________.(结果保留根号)

查看答案和解析>>

同步练习册答案