精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,如图1,将若干个边长为 数学公式的正方形并排组成矩形OABC,相邻两边OA、OC分别落在y轴的正半轴和x轴的负半轴上,将这些正方形顺时针绕点O旋转135°得到相应矩形OA′B′C′,二次函数y=ax2+bx+c(a≠0)过点O、B′、C′.
(1)如图2,当正方形个数为1时,填空:点B′坐标为______,点C′坐标为______,二次函数的关系式为______,此时抛物线的对称轴方程为______;
(2)如图3,当正方形个数为2时,求y=ax2+bx+c(a≠0)图象的对称轴;
(3)当正方形个数为2011时,求y=ax2+bx+c(a≠0)图象的对称轴;
(4)当正方形个数为n个时,请直接写出:用含n的代数式来表示y=ax2+bx+c(a≠0)图象的对称轴.

解:(1)∵正方形的边长为
∴对角线为×=2,
∵旋转角为135°,
∴点B′在x轴上,
∴点B′(2,0),
根据正方形的性质,点C′(1,1),
∵抛物线y=ax2+bx+c(a≠0)过点O、B′、C′,

解得
∴二次函数关系式为y=-x2+2x,
对称轴为直线x=-=1,
即直线x=1;
故答案为:(2,0);(1,1);y=-x2+2x;直线x=1.

(2)正方形个数为2时,B′(3,1),C′(2,2),

整理得,7a=-2b,
=-
抛物线对称轴为直线x=-=-×(-)=

(3)正方形个数为2011时,B′(2012,2010),C′(2011,2011),

整理得,6034a=-2b,
=-3017,
对称轴为直线x=-=-×(-3017)=

(4)正方形个数为n个时,B′(n+1,n-1),C′(n,n),

整理得,(3n+1)a=-2b,
=-
对称轴为直线x=-=-×(-)=
分析:(1)根据正方形的性质求出对角线的长,然后根据旋转角是135°可知点C′在x轴上,从而求出点B′、C′的坐标,再利用待定系数法求二次函数解析式,根据对称轴公式求解;
(2)先求出点B′、C′的坐标,再利用待定系数法求出a、b的关系,然后利用对称轴解析式解答;
(3)求出点B′、C′的坐标,再利用待定系数法求出a、b的关系,然后利用对称轴解析式解答;
(4)根据(2)与(3)的规律,求出点B′、C′的坐标,再利用待定系数法求出a、b的关系,然后利用对称轴解析式解答即可.
点评:本题是二次函数综合题型,主要考查了正方形的性质,旋转的性质,待定系数法的思想以及待定系数法求二次函数解析式,根据规律确定出点B′、C′的坐标是解题的关键,也是本题的难点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=-
4
9
(x-2)2
+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=
2
5
5

(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若
HE
HF
=
1
2
时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG与△ADM相似?若存在,求出所有符合条件的精英家教网直线QG的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在平面直角坐标系xOy中,已知抛物线y=ax2-2ax+b与x轴的一个交点为A(-1,0),另一个交精英家教网点B在A点的右侧;交y轴于(0,-3).
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为C,抛物线上一点D的坐标为(-3,12),在x轴上是否存在一点P,使以点P、B、C为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴、y轴正半轴交于点M、N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC边落在x轴的正半轴上,点A恰好落在线段MN上,如图2,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB、AC分别与线段MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s),△PEF的面积为S(cm2).
(1)求等边△ABC的边长;
(2)当点P在线段BA上运动时,求S与t的函数关系式,并写出自变量t的取值范围;
(3)点P沿折线B→A→C运动的过程中,是否在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•卢湾区一模)如图,已知在平面直角坐标系xoy中,抛物线y=ax2+bx+c(a>0)与x轴相交于A(-1,0),B(3,0)两点,对称轴l与x轴相交于点C,顶点为点D,且∠ADC的正切值为
12

(1)求顶点D的坐标;
(2)求抛物线的表达式;
(3)F点是抛物线上的一点,且位于第一象限,连接AF,若∠FAC=∠ADC,求F点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在等腰直角三角板ABC中,斜边BC为2个单位长度,现把这块三角板在平面直角坐标系xOy中滑动,并使B、C两点始终分别位于y轴、x轴的正半轴上,直角顶点A与原点O位于BC两侧.
(1)取BC中点D,问OD+DA是否发生改变,若会,说明理由;若不会,求出OD+DA;
(2)你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由;
(3)填空:当OA最长时A的坐标(
2
2
2
2
),直线OA的解析式
y=x
y=x

查看答案和解析>>

同步练习册答案