精英家教网 > 初中数学 > 题目详情
已知抛物线y=3ax2+2bx+c,
(1)若a=b=1,c=-1,求该抛物线与x轴的交点坐标;
(2)若a+b+c=1,是否存在实数x0,使得相应的y=1?若有,请指明有几个并证明你的结论;若没有,阐述理由.
(3)若a=
1
3
,c=2+b且抛物线在-2≤x≤2区间上的最小值是-3,求b的值.
考点:二次函数综合题
专题:
分析:(1)先将a=b=1,c=-1代入y=3ax2+2bx+c,得到抛物线为y=3x2+2x-1,再用因式分解法求出方程3x2+2x-1=0的两个根,即可得到该抛物线与x轴的交点坐标;
(2)将y=1代入y=3ax2+2bx+c,得到3ax2+2bx+c=1,则△=4b2-12a(c-1),再将c-1=-a-b代入△,整理得到△=4[(b+
3
2
a)2+
3
4
a2],由a≠0,得出△>0,根据一元二次方程根与系数的关系可知方程3ax2+2bx+c=1有两个不相等实数根,即存在两个不同实数x0,使得相应的y=1;
(3)先将a=
1
3
,c=2+b代入y=3ax2+2bx+c,得到抛物线为y=x2+2bx+b+2,根据二次函数的性质求出其对称轴为x=-b,再分三种情况进行讨论:①x=-b<-2;②x=-b>2;③-2≤-b≤2.
解答:解:(1)当a=b=1,c=-1时,抛物线为y=3x2+2x-1,
∵方程3x2+2x-1=0的两个根为x1=-1,x2=
1
3

∴该抛物线与x轴的交点坐标是(-1,0)和(
1
3
,0);

(2)存在两个不同实数x0,使得相应的y=1.理由如下:
由y=1得3ax2+2bx+c=1,即3ax2+2bx+c-1=0,
△=4b2-12a(c-1)
=4b2-12a(-a-b)
=4b2+12ab+12a2
=4(b2+3ab+3a2
=4[(b+
3
2
a)2+
3
4
a2],
∵a≠0,
∴△>0,
所以方程3ax2+2bx+c=1有两个不相等实数根,
即存在两个不同实数x0,使得相应的y=1;

(3)若a=
1
3
,c=2+b,则抛物线可化为y=x2+2bx+b+2,其对称轴为x=-b,分三种情况:
①当x=-b<-2时,即b>2,则有抛物线在x=-2时取最小值为-3,此时-3=(-2)2+2×(-2)b+b+2,解得b=3,符合题意;
②当x=-b>2时,即b<-2,则有抛物线在x=2时取最小值为-3,此时-3=22+2×2b+b+2,解得b=-
9
5
,不合题意,舍去;
③当-2≤-b≤2时,即-2≤b≤2,则有抛物线在x=-b时取最小值为-3,此时-3=(-b)2+2×(-b)b+b+2,化简得:b2-b-5=0,解得:b=
1+
21
2
(不合题意,舍去),b=
1-
21
2

综上:b=3或b=
1-
21
2
点评:本题是二次函数的综合题型,其中涉及到的知识点有二次函数的性质,抛物线与一元二次方程的关系,二次函数最值的求法.解决第(3)问时要注意分析题意分情况讨论结果.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

点A(2,3)向左平移3个单位长度得到点A′,则点A′的坐标为(  )
A、(2,0)
B、(-1,3)
C、(-2,3)
D、(5,3)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,点C是等腰直角△ABC的直角顶点,DC∥AB,BD=AB,BD交AC于点E,CF⊥AB,垂足为F,求证:
(1)∠ABD=30°;
(2)AD=AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

用代入法解下列二元一次方程组:
(1)
x-3y=2
y=x

(2)
4x+3y=5
x-2y=4

查看答案和解析>>

科目:初中数学 来源: 题型:

一项工程,甲队单独做需40天完成,若乙队先做30天后,甲、乙两队一起合做20天恰好完成任务,请问:乙队单独做需要多少天才能完成任务?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在矩形ABCD中,AB=6,AD=10,O是BD上一点,以O为圆心作圆与AB相切于点G,
(1)证明:圆O与BC相交;
(2)设圆O与BC的公共点为E、F,连接DF,若DF与圆O相切,求OB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,点B、F、C、E在同一条直线上,FB=CE,AB∥ED,AC∥FD.
(1)求证:AB=DE、AC=DF;
(2)若BC=6,△ABC的面积是12,点F在线段BC上,BF=x,四边形ABDE的面积为y,求y与x的函数关系式,并求函数值y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

小明家的屋后有足够面积的空地,他要用长16米的篱笆来围矩形养鸡场,若房屋后墙宽4米.问:
(1)如果利用后墙或后墙的一部作为篱笆养鸡的一边,怎么围法,面积最大?
(2)如果充分利用现有条件,怎样围出面积最大?最大面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将量角器和含30°角的一块直角三角板紧靠着放在同一平面内,使D,C,B在一条直线上,且DC=2BC,过点A作量角器圆弧所在圆的切线,切点为E,如果AB=6cm,则
DE
的长是
 
cm.

查看答案和解析>>

同步练习册答案