精英家教网 > 初中数学 > 题目详情

【题目】如图,在3×3的正方形网格中标出了∠1∠2.则∠1+∠2=

【答案】45°

【解析】试题分析:根据图形,先将角进行转化,再根据勾股定理的逆定理,求得∠ACB=90°,由等腰三角形的性质,推得∠1+∠2=45°

解:连接ACBC

根据勾股定理,AC=BC=AB=

2+2=2

∴∠ACB=90°∠CAB=45°

∵AD∥CFAD=CF

四边形ADFC是平行四边形,

∴AC∥DF

∴∠2=∠DAC(两直线平行,同位角相等),

Rt△ABD中,

∠1+∠DAB=90°(直角三角形中的两个锐角互余);

∵∠DAB=∠DAC+∠CAB

∴∠1+∠CAB+∠DAC=90°

∴∠1+∠DAC=45°

∴∠1+∠2=∠1+∠DAC=45°

故答案为:45°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在等腰三角形ABC中,ABC=90°,DAC边上中点,过D点作DEDF,交ABE,交BCF,若S四边形BFDE=9,则AB的长为

A. 3 B. 6 C. 9 D. 18

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ABC,DBC的中点,BEAC,过点D的直线EFBE于点E,AC于点F.

(1)求证:BE=CF

(2)如图2,过点DDGDFAB于点G,连结GF,请你判断BG+CFGF的大小关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据对徐州市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数的图象如图所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数的图象如图所示.

1)分别求出y1y2x之间的函数关系式;

2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨,写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种蔬菜各进多少吨时 获得的销售利润之和最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCAm°,ABC和∠ACD的平分线相交于点A1得∠A1A1BC和∠A1CD的平分线相交于点A2得∠A2;…;A2018BC和∠A2018CD的平分线交于点A2019则∠A2019________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB=6BC=8

1)求对角线AC的长;

2)点E是线段CD上的一点,把ADE沿着直线AE折叠.点D恰好落在线段AC上,与点F重合,求线段DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,我们称抛物线C1C2关联.

(1)已知两条抛物线①:y=x2+2x﹣1,:y=﹣x2+2x+1,判断这两条抛物线是否关联,并说明理由;

(2)抛物线C1:y=(x+1)2﹣2,动点P的坐标为(t,2),将抛物线C1绕点P(t,2)旋转180°得到抛物线C2,若抛物线C2C1关联,求抛物线C2的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=是反比例函数.

1)求m的值;

2)指出该函数图象所在的象限,在每个象限内,yx的增大如何变化?

3)判断点(2)是否在这个函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知CB是O的弦,CD是O的直径,点A为CD延长线上一点,BC=AB,CAB=30°.

(1)求证:AB是O的切线;(2)若O的半径为2,求的长.

查看答案和解析>>

同步练习册答案