精英家教网 > 初中数学 > 题目详情

【题目】如图1,在正方形ABCD中,点E,F分别是边BC,AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE,连接FG,FC

(1)请判断:FG与CE的数量关系是 ,位置关系是

(2)如图2,若点E,F分别是边CB,BA延长线上的点,其它条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;

(3)如图3,若点E,F分别是边BC,AB延长线上的点,其它条件不变,(1)中结论是否仍然成立?请直接写出你的判断

【答案】(1)FG=CE,FG∥CE;(2)成立;(3)成立

【解析】

试题分析:(1)只要证明四边形CDGF是平行四边形即可得出FG=CE,FG∥CE;

(2)构造辅助线后证明△HGE≌△CED,利用对应边相等求证四边形GHBF是矩形后,利用等量代换即可求出FG=C,FG∥CE;

(3)证明△CBF≌△DCE后,即可证明四边形CEGF是平行四边形.

试题解析:(1)FG=CE,FG∥CE;

(2)过点G作GH⊥CB的延长线于点H,∵EG⊥DE,∴∠GEH+∠DEC=90°,∵∠GEH+∠HGE=90°,∴∠DEC=∠HGE,在△HGE与△CED中,∵∠GHE=DCE,HGE=DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD,∵CE=BF,∴GH=BF,∵GH∥BF,∴四边形GHBF是矩形,∴GF=BH,FG∥CH∴FG∥CE∵四边形ABCD是正方形,∴CD=BC,∴HE=BC∴HE+EB=BC+EB∴BH=EC∴FG=EC

(3)∵四边形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90°,在△CBF与△DCE中,BF=CE,FBC=ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE,∵EG=DE,∴CF=EG,∵DE⊥EG∴∠DEC+∠CEG=90°∵∠CDE+∠DEC=90°∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四边形CEGF平行四边形,∴FG∥CE,FG=CE.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】对于一次函数y=﹣2x+1,下列说法正确的是(  )

A.图象分布在第一、二、三象限

B.yx的增大而增大

C.图象经过点(1,﹣2

D.若点Ax1y1),Bx2y2)都在图象上,且x1x2,则y1y2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知∠A=65°,则∠A的补角等于(  )
A.125°
B.105°
C.115°
D.95°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果两个相似三角形的相似比为1:4,那么它们的面积比为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+ax2a0的一个根是3,则它的另一根是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某车间4月份的产值是500万元,自5月份起革新技术,改进管理,因而第二季度的产值共计1655万元.56月份平均每月的增长率是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016四川省攀枝花市)如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)

(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1

(2)分别连结AB1、BA1后,求四边形AB1A1B的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AD为△ABC的中线,BE为△ABD的中线.

(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;

(2)作△BED的边BD边上的高;

(3)若△ABC的面积为40,BD=5,则△BDE 中BD边上的高为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,ADBCDEBC,垂足为点E,连接ACDE于点F,点GAF的中点,∠ACD=2ACB.若DG=3EC=1,则DE的长为( )

A. B. C. D.

查看答案和解析>>

同步练习册答案