精英家教网 > 初中数学 > 题目详情

作业宝△ABC中,∠ABC、∠ACB的平分线相交于点O;
(1)若∠ABC=40°,∠ACB=50°,则∠BOC=______;
(2)若∠ABC+∠ACB=116°,则∠BOC=______;
(3)若∠A=76°,则∠BOC=______;
(4)若∠BOC=120°,则∠A=______;
(5)若∠A=x°,求∠BOC的度数(用x的代数式表示).

解:(1)∠BOC=180°-(40°+50°)=135°;

(2)∠BOC=180°-×116°=122°;

(3)∠BOC=180°-×(180°-∠A)=128°;

(4)∵∠BOC=120°
∴∠OBC+∠OCB=60°
根据角平分线的定义得:∠ABC+∠ACB=2×60°=120°
∴∠A=60°;

(5)根据角平分线的定义得:∠OBC+∠OCB=(∠ABC+∠ACB)
∴∠BOC=180°-(∠OBC+∠OCB)=180°-(∠ABC+∠ACB)=180°-(180°-∠A)=90°+0.5x.
分析:(1)-(4)充分利用三角形的内角和定理和角平分线的定义进行求解;
(5)根据三角形的内角和定理以及角平分线的定义导出∠BOC=90°+0.5x.
点评:通过做此题,主要是能够发现结论:△ABC中,∠ABC、∠ACB的平分线相交于点O,则∠BOC=90°+∠A.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

20、问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当∠BAC=90°时,依问题中的条件补全右图;
观察图形,AB与AC的数量关系为
相等
;当推出∠DAC=15°时,可进一步推出∠DBC的度数为
15°
;可得到∠DBC与∠ABC度数的比值为
1:3

(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:江苏期中题 题型:解答题

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH?H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH?重叠部分的面积为y,求y与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:湖南省中考真题 题型:解答题

如图1,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3。
(1)延长HF交AB于G,求△AHG的面积;
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B 重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图2)。
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由;
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系。

查看答案和解析>>

同步练习册答案