精英家教网 > 初中数学 > 题目详情

【题目】我市在创建全国文明城市过程中,决定购买A,B两种树苗对某路段道路进行绿化改造,已知购买A种树苗8棵,B种树苗3棵,需要950元;若购买A种树苗5棵,B种树苗6棵,则需要800元.
(1)求购买A,B两种树苗每棵各需多少元?
(2)考虑到绿化效果和资金周转,购进A种树苗不能少于50棵,且用于购买这两种树苗的资金不能超过7650元,若购进这两种树苗共100棵,则有哪几种购买方案?
(3)某包工队承包种植任务,若种好一棵A种树苗可获工钱30元,种好一棵B种树苗可获工钱20元,在第(2)问的各种购买方案中,种好这100棵树苗,哪一种购买方案所付的种植工钱最少?最少工钱是多少元?

【答案】
(1)解:设购买A种树苗每棵需要x元,B种树苗每棵需要y元,

由已知得:

解得:

答:购买A种树苗每棵需要100元,B种树苗每棵需要50元


(2)解:设购买A种树苗m棵,则购买B种树苗100﹣m棵,

根据已知,得

解得:50≤m≤53.

故有四种购买方案:1、购买A种树苗50棵,B种树苗50棵;2、购买A种树苗51棵,B种树苗49棵;3、购买A种树苗52棵,B种树苗48棵;4、购买A种树苗53棵,B种树苗47棵


(3)解:设种植工钱为W,由已知得:

W=30m+20(100﹣m)=10m+2000,

∴当m=50时,W最小,最小值为2500元.

故购买A种树苗50棵、B种树苗50棵时所付的种植工钱最少,最少工钱是2500元.


【解析】(1)设购买A种树苗每棵需要x元,B种树苗每棵需要y元,根据总价=单价×数量,可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设购买A种树苗m棵,则购买B种树苗100﹣m棵,根据总价=单价×数量,可列出关于m的一元一次不等式组,解不等式组即可得出m的取值范围,由此可得出结论;(3)设种植工钱为W,根据植树的工钱=植A种树的工钱+植乙种数的工钱,列出W关于m的函数关系式,根据一次函数的单调性即可解决最值问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,将ABC纸片沿DE折叠,使点A落在点A'处,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,则∠1+2的度数为(  )

A. 80°; B. 90°; C. 100°; D. 110°;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点Ax轴上的一个动点,点Cy轴上,以AC为对角线画正方形ABCD,已知点C的坐标是,设点A的坐标为

时,正方形ABCD的边长______

连结OD,当时,______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠AOC为直角,OC是∠BOD的平分线,且∠AOB=57.65°,则∠AOD的度数是( )

A. 122°20′ B. 122°21′ C. 122°22′ D. 122°23′

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,不一定成立的是  

A. 四边形ABCD是平行四边形 B.

C. 是等边三角形 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们规定运算符号的意义是:当ab时,ab=a﹣b;当ab时,ab=a+b

1)计算:61=   ;(﹣32=   

2棍据运算符号的意义且其他运算符号意义不变的条件下

①计算:﹣14+15×[]3223÷7),

②若xy在数轴上的位置如图所示,

a.填空:x2+1   y(填):

b.化简:[x2+x+1x+y]+[y﹣x2y+2]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在篮球比赛中,某队员连续10场比赛中每场的得分情况如下所示:

场次(场)

1

2

3

4

5

6

7

8

9

10

得分(分)

13

4

13

16

6

19

4

4

7

18

则这10场比赛中该队员得分的中位数和众数分别是(
A.10,4
B.10,13
C.11,4
D.12.5,13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+ 交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.

(1)求抛物线的解析式;
(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;
(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:甲、乙两车分别从相距300千米的 A,B两地同时出发相向而行,其中甲到 B地后立即返回,下图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象

(1)求甲车离出发地的距离 y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;

(2)当它们行驶到与各自出发地的距离相等时,用了 小时,求乙车离出发地的距离 y(千米)与行驶时间 x(小时)之间的函数关系式;

(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.

查看答案和解析>>

同步练习册答案