精英家教网 > 初中数学 > 题目详情
16.阅读材料:如图1,若点P是⊙O外的一点,线段PO交⊙O于点A,则PA长是点P与⊙O上各点之间的最短距离.
证明:延长PO交⊙O于点B,显然PB>PA.
如图2,在⊙O上任取一点C(与点A,B不重合),连结PC,OC.
∵PO<PC+OC,
且PO=PA+OA,OA=OC,
∴PA<PC
∴PA 长是点P与⊙O上各点之间的最短距离.
由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题.
(1)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是$\widehat{CD}$上的一个动点,连接AP,则AP长的最小值是$\sqrt{5}$-1.
(2)如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,①求线段A’M的长度; ②求线段A′C长的最小值.

分析 (1)由圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差可得结论;
(2)①利用翻折的性质和菱形的性质可得出结论;
②利用①的结论易得点A′在以点M为圆心,1为半径的圆上,再利用菱形的性质和锐角三角函数得DH,MH,易得CH,由勾股定理得CM,求得A′C.

解答 解:(1)连接AO与⊙O相交于点P,如图①,由已知定理可知,
此时AP最短,
∵∠ACB=90°,AC=BC=2,BC为直径,
∴PO=CO=1,
∴AO=$\sqrt{{AC}^{2}{+CO}^{2}}$=$\sqrt{{2}^{2}{+1}^{2}}$=$\sqrt{5}$,
∴AP=$\sqrt{5}$-1,
故答案为:$\sqrt{5}$-1;

(2)①∵将△AMN沿MN所在的直线翻折得到△A′MN,由翻折的性质可得:
A′M=AM,
∵M是AD边的中点,四边形ABCD为菱形,边长为2,
∴AM=1,
∴A′M=1;
②由①知,点A′在以点M为圆心,1为半径的圆上,
连接CM交圆M于点A′,过点M向CD的延长线作垂线,垂足为点H,如图②,
∵∠A=60°,四边形ABCD为菱形,
∴∠HDM=60°,
在Rt△MHD中,
DH=DM•cos∠HDM=$\frac{1}{2}$,
MH=DM•sin∠HDM=$\frac{\sqrt{3}}{2}$,
∴CH=CD+DH=2+$\frac{1}{2}$=$\frac{5}{2}$,
在Rt△CHM中,
CM=$\sqrt{{MH}^{2}+C{H}^{2}}$=$\sqrt{{(\frac{\sqrt{3}}{2})}^{2}{+(\frac{5}{2})}^{2}}$=$\sqrt{7}$,
∴A′C=$\sqrt{7}$-1.

点评 本题主要考查了菱形的性质,翻折的性质,最短距离问题,理解圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.-$\frac{1}{3}$的相反数是(  )
A.3B.$\frac{1}{3}$C.-3D.-$\frac{1}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.阅读材料:
关于x的方程:
x+$\frac{1}{x}=c+\frac{1}{c}$的解为:x1=c,x2=$\frac{1}{c}$
x-$\frac{1}{x}=c-\frac{1}{c}$(可变形为x+$\frac{-1}{x}=c+\frac{-1}{c}$)的解为:x1=c,x2=$\frac{-1}{c}$
x+$\frac{2}{x}=c+\frac{2}{c}$的解为:x1=c,x2=$\frac{2}{c}$
x+$\frac{3}{x}=x+\frac{3}{c}$的解为:x1=c,x2=$\frac{3}{c}$

根据以上材料解答下列问题:
(1)①方程x+$\frac{1}{x}=2+\frac{1}{2}$的解为${x}_{1}=2,{x}_{2}=\frac{1}{2}$
②方程x-1+$\frac{1}{x-1}$=2+$\frac{1}{2}$的解为${x}_{1}=3,{x}_{2}=\frac{3}{2}$
(2)解关于x方程:x-$\frac{3}{x-2}=a-\frac{3}{a-2}$(a≠2)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列运算正确的是(  )
A.(-2x23=-8x6B.(a32=a5C.a3•(-a)2=-a5D.(-x)2÷x=-x

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.(1)计算:($\sqrt{2015}$-1)0+$\sqrt{18}$sin45°-2-2;   
(2)解不等式组:$\left\{\begin{array}{l}{x-1>0}\\{\frac{x}{2}≤\frac{x+1}{3}}\end{array}\right.$
(3)解方程:x2-4x+1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.下列计算正确的是(  )
A.-$\sqrt{(-1)^{2}}$=1B.-2+1=1C.2×(-1)0=-2D.9-1×9=1

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.先化简再计算:$\frac{{{x^2}-1}}{{{x^2}+x}}$÷(x-$\frac{2x-1}{x}$),其中x=$\sqrt{5}$+1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知x(x-2)=8,求代数式(x-2)2+2x(x-1)-5的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.为了抓住保国寺建寺1000年的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
(1)求购进A、B两种纪念品每件各需多少元?
(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?

查看答案和解析>>

同步练习册答案