精英家教网 > 初中数学 > 题目详情
直线AB:y=-x-b分别与x、y轴交于A (6,0)、B两点,过点B的直线交x轴负半轴于C,且OB:OC=3:1;
(1)求直线BC的解析式;
(2)直线EF:y=kx-k(k≠0)交AB于E,交BC于点F,交x轴于D,是否存在这样的直线EF,使得S△EBD=S△FBD?若存在,求出k的值;若不存在,说明理由;
(3)如图,P为A点右侧x轴上的一动点,以P为直角顶点、BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?如果不变请求出它的坐标;如果变化,请说明理由.
精英家教网
分析:代入点的坐标求出解析式y=3x+6,利用坐标相等求出k的值,用三角形全等的相等关系求出点的坐标.
解答:解:(1)由已知:0=-6-b,
∴b=-6,
∴AB:y=-x+6.
∴B(0,6)
∴OB=6
∵OB:OC=3:1,
OC=
OB
3
=2

∴C(-2,0)
设BC的解析式是Y=ax+c,代入得;
6=0•a+c
0=-2a+c

解得:
a=3
c=6

∴BC:y=3x+6.
直线BC的解析式是:y=3x+6;

(2)过E、F分别作EM⊥x轴,FN⊥x轴,则∠EMD=∠FND=90°.精英家教网
∵S△EBD=S△FBD
∴DE=DF.
又∵∠NDF=∠EDM,
∴△NFD≌△EDM,
∴FN=ME.
联立
y=kx-k
y=-x+6
yE=
5k
k+1

联立
y=kx-k
y=3x+6
yF=
9k
k-3

∵FN=-yF,ME=yE
5k
k+1
=
-9k
k-3

∵k≠0,
∴5(k-3)=-9(k+1),
k=
3
7


(3)不变化K(0,-6).
过Q作QH⊥x轴于H,精英家教网
∵△BPQ是等腰直角三角形,
∴∠BPQ=90°,PB=PQ,
∵∠BOA=∠QHA=90°,
∴∠BPO=∠PQH,
∴△BOP≌△HPQ,
∴PH=BO,OP=QH,
∴PH+PO=BO+QH,
即OA+AH=BO+QH,
又OA=OB,
∴AH=QH,
∴△AHQ是等腰直角三角形,
∴∠QAH=45°,
∴∠OAK=45°,
∴△AOK为等腰直角三角形,
∴OK=OA=6,
∴K(0,-6).
点评:此题是一个综合运用的题,关键是正确求解析式和灵活运用解析式去解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知直线AB是⊙O的切线,A为切点,OB交⊙O于点C,点D在⊙O上,且∠OBA=40°,则∠ADC=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、Rt△ABC的两条直角边BC=3cm,AC=4cm,若以C为圆心,以3cm为半径作圆,则直线AB与这个圆的位置关系是
相交

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,以(1,0)为圆心的⊙精英家教网P与y轴相切于原点O,过点A(-1,0)的直线AB与⊙P相切于点B.
(1)求AB的长;
(2)求AB、OA与
OB
所围成的阴影部分面积(不取近似值);
(3)求直线AB的解析式;
(4)直线AB上是否存在点M,使OM+PM的值最小?如果存在,请求出点M的坐标;如果不存在,请说理.

查看答案和解析>>

科目:初中数学 来源: 题型:

给出下列四个命题:
(1)如果某圆锥的侧面展开图是半圆,则其轴截面一定是等边三角形;
(2)若点A在直线y=2x-3上,且点A到两坐标轴的距离相等,则点A在第一或第四象限;
(3)半径为5的圆中,弦AB=8,则圆周上到直线AB的距离为2的点共有四个;
(4)若A(a,m)、B(a-1,n)(a>0)在反比例函y=
4
x
的图象上,则m<n.
其中,正确命题的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图,平面上有四个点A、B、C、D,根据下列语句画图
(1)画直线AB; 作射线BC;画线段CD;
(2)连接AD,并将其反向延长至E,使DE=2AD;
(3)找到一点F,使点F到A、B、C、D四点距离和最短.

查看答案和解析>>

同步练习册答案