精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,以(1,0)为圆心的⊙精英家教网P与y轴相切于原点O,过点A(-1,0)的直线AB与⊙P相切于点B.
(1)求AB的长;
(2)求AB、OA与
OB
所围成的阴影部分面积(不取近似值);
(3)求直线AB的解析式;
(4)直线AB上是否存在点M,使OM+PM的值最小?如果存在,请求出点M的坐标;如果不存在,请说理.
分析:(1)连接PB,由于A、P的坐标已知,因此求出OA、AP的长度,由直线AB与⊙P相切于点B,利用切割线定理可以求出AB的长度;
(2)连接OB,根据已知条件知道C为AP的中点,利用(1)的结果可以得到∠OPB=60°,而S阴影=S△ABP-S扇形POB,因此即可求出阴影部分面积;
(3)设直线AB与y轴相交于点C,根据已知条件可以得到∠BAP=30°,而OA=1,因此可以求出CO的长度,即求出了C的坐标,而A的坐标已知,再利用待定系数法即可求出AB的解析式;
(4)延长PB交y轴于点N,根据已知条件可以求出∠ONP=30°,然后得到PN=2PO=2,接着得到BN=PN-PB=1=PB,所以直线AB是线段PN的垂直平分线,点P、N关于直线AB成轴对称,即ON与直线AB的交点C就是所求的点M,然后即可求出M的坐标.
解答:精英家教网解:(1)连接PB
∵点A、P的坐标分别为(-1,0)、(1,0),
∴OA=OP=1,
∴PA=2.
∵直线AB与⊙P相切于点B,
∴PB⊥AB,
∴∠ABP=90°
又∵⊙P与y轴相切于原点O,
∴PB=OP=1,
∴AB=
AP2-BP2
=
22-12
=
3


(2)连接OB
∵∠ABP=90°,OA=OP,
∴OB=OP=
1
2
AP,
又∵PB=OP,
∴PB=OP=OB,
∴∠OPB=60°,
∴S阴影=S△ABP-S扇形POB
=
1
2
×
3
×1-
60×12π
360

=
3
2
-
π
6
=
3
3
6


(3)设直线AB与y轴相交于点C
∵∠OPB=60°,∠ABP=90°,
∴∠BAP=180°-60°-90°=30°,
∴在Rt△OAC中,OC=
1
2
AC,
设OC=x,则AC=2x,
依题意得(2x)2=x2+12
解得x=±
3
3

∵x>0,
∴x=
3
3

∴点C坐标为(0,
3
3
),
可设直线AB的解析式为y=kx+
3
3
(k≠0),
∵直线AB过点A(-1,0),
∴-1•k+
3
3
=0,
∴k=
3
3

∴直线AB的解析式为y=
3
3
x+
3
3


(4)延长PB交y轴于点N
在Rt△OPN中,∠ONP=180°-60°-90°=30°,
∴PN=2PO=1×2=2,
∴BN=PN-PB=1=PB;
又∵PB⊥AB,
∴直线AB是线段PN的垂直平分线,点P、N关于直线AB成轴对称
∴ON与直线AB的交点C就是所求的点M.
故直线AB上存在点M,使OM+PM的值最小,点M即点C(0,
3
3
).
点评:此题比较复杂,考查了一次函数的图象和性质、圆的切线的性质、待定系数法确定直线的解析式、解直角三角形及轴对称的性质及应用,综合性非常强,对于学生的要求很高,解题时一定要有耐心.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案