精英家教网 > 初中数学 > 题目详情

【题目】如图,直线 轴、轴分别交于,点的坐标为是直线在第一象限内的一个动点

(1)求⊿的面积的函数解析式,并写出自变量的取值范围

(2)过点轴于点, 轴于点,连接,是否存在一点使得的长最小,若存在,求出的最小值;若不存在,请说明理由

【答案】(1);(2)的最小值为

【解析】本题的⑴问直接根据坐标来表示⊿的底边和底边上的高,利用三角形的面积公式得出函数解析式;

本题的⑵抓住四边形是矩形,矩形的对角线相等即 ,从而把转化到上来解决,当的端点运动到 最短,以此为切入点,问题可获得解决.

.的坐标为是直线在第一象限的一个动点,且.

,

整理得:

自变量的取值范围是:

. 存在一点使得的长最小.

求出直线轴交点的坐标为 , 轴交点的坐标为

根据勾股定理计算: .

, 轴,

∴四边形是矩形

的端点运动到(实际上点恰好是的中点)时

最短(垂线段最短)(见示意图)

又∵ 点为线段中点(三线合一)

(注:也可以用面积方法求解)

的最小值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C在点B右侧,长度为3个单位的线段BC在数轴上移动,

1)如图1,当线段BCOA两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;

2)线段BC在数轴上沿射线AO方向移动的过程中,是否存在ACOB=AB?若存在,求此时满足条件的b的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知5A型机器一天的产品装满8箱后还剩4个,7B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品.

(1)求每箱装多少个产品.

(2)3A型机器和2B型机器一天能生产多少个产品?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数轴上,AB两点表示的数ab满足|a﹣6|+(b+12)2=0

(1)a=   b=   

(2)若小球MA点向负半轴运动、小球NB点向正半轴运动,两球同时出发,小球M运动的速度为每秒2个单位,当M运动到OB的中点时,N点也同时运动到OA的中点,则小球N的速度是每秒   个单位;

(3)若小球MN保持(2)中的速度,分别从AB两点同时出发,经过   秒后两个小球相距两个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点R,则PQ+PR的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.

(1)写出数轴上点B表示的数 ,点P表示的数 (用含t的代数式表示);

(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H同时出发,问点P运动多少秒时追上点H?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等.经洽谈,甲商场的优惠方案是:每购买10套队服,送1个足球;乙商场的优惠方案是:若购买队服超过80套,则购买足球打八折.

(1)每套队服和每个足球的价格分别是多少?

(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所需的费用.

(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第一年的可变成本为2.6万元,设可变成本平均每年增长的百分率为

1)用含x的代数式表示低3年的可变成本为 万元;

2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年的增长百分率x.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1 , 作正方形A1B1C1B2 , 延长C1B2交直线l于点A2 , 作正方形A2B2C2B3 , 延长C2B3交直线l于点A3 , 作正方形A3B3C3B4 , …,依此规律,则A2016A2017=

查看答案和解析>>

同步练习册答案