精英家教网 > 初中数学 > 题目详情

【题目】已知5A型机器一天的产品装满8箱后还剩4个,7B型机器一天的产品装满11箱后还剩1个,每台A型机器比B型机器一天多生产1个产品.

(1)求每箱装多少个产品.

(2)3A型机器和2B型机器一天能生产多少个产品?

【答案】(1)装12个产品.(2)98个.

【解析】

B型机器一天生产x个产品,则A型机器一天生产(x+1)个产品,根据每箱产品的个数的一定的,列方程求解.

解:(1)设B型机器一天生产x个产品,则A型机器一天生产(x+1)个产品,由题意得:

解得:x=19,

7x﹣1=132,

132÷11=12().

答:每箱装12个产品.

(2)(12×8+4)÷5×3+(12×11+1)÷7×2

=20×3+19×2

=60+38

=98().

答:3A型机器和2B型机器一天能生产98个产品.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△AOB中,∠AOB为直角,OA=6,OB=8,半径为2的动圆圆心Q从点O出发,沿着OA方向以1个单位长度/秒的速度匀速运动,同时动点P从点A出发,沿着AB方向也以1个单位长度/秒的速度匀速运动.设运动时间为t秒(0<t≤5)以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连结CD、QC.
(1)当t为何值时,点Q与点D重合?
(2)当⊙Q经过点A时,求⊙P被OB截得的弦长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上,点A表示数a,点B表示数b,已知a、b满足.

(1)a、b的值;

(2)若在数轴上存在一点C,使得CA的距离是CB的距离的2倍,求点C表示的数;

(3)若小蚂蚁甲从点A处以1个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以2个单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时在原点O处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒.求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在数轴上,把表示数1的点称为基准点,记作点. 对于两个不同的MN,若点M、点N到点的距离相等,则称点M与点N互为基准变换点. 例如:图中,点M表示数,点N表示数3,它们与基准点的距离都是2个单位长度,点M与点N互为基准变换点.

1)已知点A表示数a,点B表示数b,点A与点B互为基准变换点.

a=0,则b= ;若,则b=

用含a的式子表示b,则b=

2)对点A进行如下操作:先把点A表示的数乘以,再把所得数表示的点沿着数轴向左移动3个单位长度得到点B. 若点A与点B互为基准变换点,则点A表示的数是

3)点P在点Q的左边,点P与点Q之间的距离为8个单位长度.对PQ两点做如下操作:点P沿数轴向右移动kk>0)个单位长度得到 的基准变换点,点沿数轴向右移动k个单位长度得到 的基准变换点,……,依此顺序不断地重复,得到 . Q的基准变换点,将数轴沿原点对折后的落点为 的基准变换点, 将数轴沿原点对折后的落点为……,依此顺序不断地重复,得到 .若无论k为何值, 两点间的距离都是4,则n= .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,矩形ABCDAB=6,BC=8,再沿EF折叠,使D点与B点重合,C点的对应点为G,将△BEF绕着点B顺时针旋转,旋转角为a(0°<a<180°),记旋转这程中的三角形为△BE′F′,在旋转过程中设直线E′F′与射钱EF、射线ED分别交于点M、N,当EN=MN时,则FM的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一元二次方程x2﹣2x﹣ =0的某个根,也是一元二次方程x2﹣(k+2)x+ =0的根,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,sin∠EMP=

(1)如图1,当点E与点C重合时,求CM的长;
(2)如图2,当点E在边AC上时,点E不与点A,C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出x的取值范围;

(3)若△AME∽△ENB,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线 轴、轴分别交于,点的坐标为是直线在第一象限内的一个动点

(1)求⊿的面积的函数解析式,并写出自变量的取值范围

(2)过点轴于点, 轴于点,连接,是否存在一点使得的长最小,若存在,求出的最小值;若不存在,请说明理由

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:

年度

投入技改资金万元

产品成本万元

2014

2015

3

12

2016

4

9

2017

8

(1)分析表中数据,请从一次函数和反比例函数中确定一个函数表示其变化规律,直接写出yx的函数关系式;

(2)按照这种变化规律,若2018年已投入资金6万元.

预计2018年每件产品成本比2017年降低多少万元

若计划在2018年把每件产品成本降低到5万元,则还需要投入技改资金多少万元?

查看答案和解析>>

同步练习册答案