精英家教网 > 初中数学 > 题目详情
(2013•泰州)若m=2n+1,则m2-4mn+4n2的值是
1
1
分析:所求式子利用完全平方公式变形,将已知等式变形后代入计算即可求出值.
解答:解:∵m=2n+1,即m-2n=1,
∴原式=(m-2n)2=1.
故答案为:1
点评:此题考查了完全平方公式,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•泰州一模)已知一次函数y1=2x和二次函数y2=x2+1.
(1)求证:函数y1、y2的图象都经过同一个定点;
(2)求证:在实数范围内,对于任意同一个x的值,这两个函数所对应的函数值y1≤y2总成立;
(3)是否存在抛物线y3=ax2+bx+c,其图象经过点(-5,2),且在实数范围内,对于同一个x的值,这三个函数所对应的函数值y1≤y3≤y2总成立?若存在,求出y3的解析式;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰州一模)如图,在平面直角坐标系中,O是坐标原点,直线y=3x+9与x轴、y轴分别交于A、C两点,抛物线y=-
1
4
x2+bx+c
经过A、C两点,与x轴的另一个交点为点B,动点P从点A出发沿AB以每秒3个单位长度的速度向点B运动,动点Q从点B出发沿BC以每秒3个单位长度的速度向点C运动,动点N从点C出发沿CA以每秒
3
10
5
个单位长度的速度向点A运动,点P、Q、N同时出发、同时停止,设运动时间为t(0<t<5)秒.
(1)求抛物线的解析式;
(2)判断△ABC的形状;
(3)以OC为直径的⊙O′与BC交于点M,求当t为何值时,PM与⊙O′相切?请说明理由;
(4)在点P、Q、N运动的过程中,是否存在△NCQ为直角三角形的情形?若存在,求出相应的t值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰州)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泰州)如图,在矩形ABCD中,点P在边CD上,且与C、D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,M为PQ中点.
(1)求证:△ADP∽△ABQ;
(2)若AD=10,AB=20,点P在边CD上运动,设DP=x,BM2=y,求y与x的函数关系式,并求线段BM的最小值;
(3)若AD=10,AB=a,DP=8,随着a的大小的变化,点M的位置也在变化.当点M落在矩形ABCD外部时,求a的取值范围.

查看答案和解析>>

同步练习册答案