精英家教网 > 初中数学 > 题目详情
如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB的距离为
 
考点:垂径定理,勾股定理
专题:
分析:作OC⊥AB于C,连接OA,根据垂径定理得到AC=BC=
1
2
AB=3,然后在Rt△AOC中利用勾股定理计算OC即可.
解答:解:作OC⊥AB于C,连结OA,如图,
∵OC⊥AB,
∴AC=BC=
1
2
AB=
1
2
×8=4,
在Rt△AOC中,OA=5,
∴OC=
OA2-AC2
=
52-42
=3,
即圆心O到AB的距离为3.
故答案为:3.
点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(
a
1
16
)两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0,2).
(1)求a,b,c的值;
(2)求证:在点P运动的过程中,⊙P始终与x轴相交;
(3)设⊙P与x轴相交于M(x1,0),N(x2,0)(x1<x2)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,矩形ABCD的边AD在y轴上,抛物线y=x2-4x+3经过点A、点B,与x轴交于点E、点F,且其顶点M在CD上.

(1)请直接写出下列各点的坐标:A
 
,B
 
,C
 
,D
 

(2)若点P是抛物线上一动点(点P不与点A、点B重合),过点P作y轴的平行线l与直线AB交于点G,与直线BD交于点H,如图2.
①当线段PH=2GH时,求点P的坐标;
②当点P在直线BD下方时,点K在直线BD上,且满足△KPH∽△AEF,求△KPH面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=
1
x
的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn-1⊥An-1Pn-1,垂足分别为B1,B2,B3,B4,…,Bn-1,连接P1P2,P2P3,P3P4,…,Pn-1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn-1Bn-1Pn,则Rt△Pn-1Bn-1Pn的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

观察分析下列数据:0,-
3
6
,-3,2
3
,-
15
,3
2
,…,根据数据排列的规律得到第16个数据应是
 
 (结果需化简).

查看答案和解析>>

科目:初中数学 来源: 题型:

为了丰富同学们的课余生活,体育委员小强到体育用品商店购羽毛球拍和乒乓球拍,若购1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍.若设每幅羽毛球拍为x元,每幅乒乓球拍为y元,列二元一次方程组为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知23×83=22n,则n=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

下列四个实数中,是无理数的为(  )
A、0
B、-3
C、
8
D、
3
11

查看答案和解析>>

同步练习册答案