精英家教网 > 初中数学 > 题目详情

【题目】用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是(  )

A.2n+1
B.n2﹣1
C.n2+2n
D.5n﹣2

【答案】C
【解析】解:∵第1个图形中,小正方形的个数是:22﹣1=3;
第2个图形中,小正方形的个数是:32﹣1=8;
第3个图形中,小正方形的个数是:42﹣1=15;

∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;
故选:C.
由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某花木公司在20天内销售一批马蹄莲.其中,该公司的鲜花批发部日销售量y1(万朵)与时间x(x为整数,单位:天)部分对应值如下表所示.

时间x(天)

0

4

8

12

16

20

销量y1(万朵)

0

16

24

24

16

0

另一部分鲜花在淘宝网销售,网上销售日销售量y2(万朵)与时间x(x为整数,单位:天) 关系如图所示.

(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与x的变化规律,写出y1与x的函数关系式及自变量x的取值范围;
(2)观察马蹄莲网上销售量y2与时间x的变化规律,请你设想商家采用了何种销售策略使得销售量发生了变化,并写出销售量y2与x的函数关系式及自变量x的取值范围;
(3)设该花木公司日销售总量为y万朵,写出y与时间x的函数关系式,并判断第几天日销售总量y最大,并求出此时最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5m长的彩绳截成2m或1m的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法(  )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE= CD,从而得出结论:AC+BC= CD.
简单应用:

(1)在图①中,若AC= ,BC=2 ,则CD=
(2)如图③,AB是⊙O的直径,点C、D在⊙上, = ,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE= AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线段之间、角之间的关系进行了探究.

(一)尝试探究
如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.
(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为
(2)如图3,当点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为调查本校学生周末平均每天做作业所用时间的情况,随机调查了50名同学,下图是根据调查所得数据绘制的统计图的一部分.

请根据以上信息,解答下列问题:

1)在这次调查的数据中,做作业所用时间的众数是 ,中位数是 ,平均数是

2)若该校共有2000名学生,根据以上调查结果估计该校全体学生每天做作业时间在3小时内(含3小时)的同学共有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分别是AB、AD、CB上的点,AM=CE=1,AN=3,点P从点M出发,以每秒1个单位长度的速度沿折线MB﹣BE向点E运动,同时点Q从点N出发,以相同的速度沿折线ND﹣DC﹣CE向点E运动,当其中一个点到达后,另一个点也停止运动.设△APQ的面积为S,运动时间为t秒,则S与t函数关系的大致图象为( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:

关注情况

频数

频率

A.高度关注

M

0.1

B.一般关注

100

0.5

C.不关注

30

N

D.不知道

50

0.25


(1)根据上述统计图可得此次采访的人数为人,m= , n=
(2)根据以上信息补全条形统计图;
(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有人.

查看答案和解析>>

同步练习册答案