【题目】已知:用2辆A型车和1辆B型车装满货物一次可运货10t;用1辆A型车和2辆B型车装满货物一次可运货11t.某物流公司现有35t货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
【答案】(1)1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;(2)有3种租车方案,详见解析;(3)最省钱的租车方案为租A型车1辆,B型车8辆,租车费用为1060元.
【解析】
(1)根据“用2辆A型车和1辆B型车装满货物一次可运货10 t;”“用1辆A型车和2辆B型车装满货物一次可运货11 t”,分别得出等式方程,组成方程组求出即可;
(2)由题意得出:3a+4b=35,解此二元一次方程,求出其整数解,得到三种租车方案;.
(3)求出每种方案下的租金数,经比较、分析,即可解决问题.
解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,
依题意列方程组得:
,
解得: .
答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;
(2)结合题意和(1)得:3a+4b=35,
∴b= ,
∵a、b都是正整数,
∴ 或 或 .
答:有3种租车方案:
方案一:A型车1辆,B型车8辆;
方案二:A型车5辆,B型车5辆;
方案三:A型车9辆,B型车2辆.
(3)方案①的租金为:1×100+8×120=1060(元),
方案②的租金为:5×100+5×120=1100(元),
方案③的租金为:9×100+2×120=1140(元),
∵1140>1100>1060,
∴最省钱的租车方案为方案①,租车费用为1060元.
故答案为:(1)1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨;(2)有3种租车方案,详见解析;(3)最省钱的租车方案为租A型车1辆,B型车8辆,租车费用为1060元.
科目:初中数学 来源: 题型:
【题目】下列命题:(1)两直线平行,内错角相等;(2)如果m是无理数,那么m是无限小数;(3)64的立方根是8;(4)同旁内角相等,两直线平行;(5)如果a是实数,那么是无理数.(6)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(7)直线外一点到这条直线的垂线段,叫做该点到直线的距离;(8)过一点作已知直线的平行线,有且只有一条.其中是真命题的有 ( )
A. 0个B. 1个C. 2个D. 3个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知射线CB//OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
(1)求∠EOB的度数.(直接写出结果,无需解答过程)
∠EOB=__________°
(2)若在OC右侧左右平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,请找出变化规律;若不变,请求出这个比值.
(3)在OC右侧左右平行移动AB的过程中,是否存在使∠OEC=∠OBA的情况?若存在,请直接写出∠OEC度数;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A、B两仓库.已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A、B两库的路程和运费如下表:(表中“元/吨千米”表示每吨粮食运送1千米所需人民币)
路程(千米) | 运费(元/吨千米) | |||
甲库 | 乙库 | 甲库 | 乙库 | |
A库 | 20 | 15 | 12 | 12 |
B库 | 25 | 20 | 10 | 8 |
(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式;
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义符号min{a,b,c}表示a、b、c三个数中的最小值,如min{1,﹣2,3}=﹣2,min{0,5,5}=0.
(1)根据题意填空:min= ;
(2)试求函数y=min{2,x+1,﹣3x+11}的解析式;
(3)关于x的方程﹣x+m=min{2,x+1,﹣3x+11}有解,试求常数m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,△ABC中,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B,C分别在AD,AF上,此时BD=CF,BD⊥CF成立.
(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长DB交AF,CF于点N,H.
①求证:BD⊥CF;
②当AB=2,AD=3 时,求线段AN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知,射线分别和直线交于点,射线分别和直线交于点,点在射线上运动(点与三点不重合),设,,.
(1)如果点在两点之间运动时,之间有何数量关系?请说明理由;
(2)如果点在两点之外运动时,之间有何数量关系?(只需写出结论,不必说明理由)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对于二次函数y=ax2+bx+c(a≠0)的图象,得出了下面五条信息:①c>0;②b=6a;③b2﹣4ac>0;④a+b+c<0;⑤对于图象上的两点(﹣6,m )、(1,n),有m<n.其中正确信息的个数有( )
A.2个
B.3个
C.4个
D.5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是某同学对多项式(x2-4x-3)(x2-4x+1)+4进行因式分解的过程.
解:设x2-4x=y
原式=(y-3)(y+1)+4 (第一步)
= y2-2y+1 (第二步)
=(y-1)2 (第三步)
=(x2-4x-1)2 (第四步)
回答下列问题:
(1)该同学第二步到第三步运用了因式分解的_______.
A.提取公因式法 B.平方差公式法 C.完全平方公式法
(2)请你模仿以上方法尝试对多项式(x2+2x)(x2+2x+2)+1进行因式分解.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com