精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O的弦AB4cm,点C为优弧上的动点,且∠ACB30°.若弦DE经过弦ACBC的中点MN,则DM+EN的最大值是_____cm

【答案】6

【解析】

由点MN分别是ACBC的中点,根据三角形中位线定理得出MN=AB为定值,则NE+DM=DE-MN,所以当MN取最大值时,DM+EN有最大值.而直径是圆中最长的弦,故当DE为⊙O的直径时,可求得DM+EN的最大值.

DE为⊙O的直径时,DM+EN有最大值;

DE为直径时,M点与O点重合,

AC也是直径,AC=8cm

∵∠ABC是直径所对的圆周角,

∴∠ABC=90°

∵∠C=30°AB=4cm

AB=AC=8

∵点MN分别为ACBC的中点,

MN=AB=2

DM+EN=DE-MN=8-2=6

故答案为:6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下图为某小区的两幢1O层住宅楼,由地面向上依次为第1层、第2层、…、第10层,每层的高度为3m,两楼间的距离AC=30m.现需了解在某一时段内,甲楼对乙楼的采光的影响情况.假设某一时刻甲楼楼顶B落在乙楼的影子长EC=h,太阳光线与水平线的夹角为α.

(1)用含α的式子表示h

(2)当α=30°时,甲楼楼顶B的影子落在乙楼的第几层?从此时算起,若α每小时增加10°,几小时后,甲楼的影子刚好不影响乙楼采光.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】14分)如图,已知抛物线)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.

(1)求此抛物线的解析式;

(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;

(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知ABC中,AB5BC3AC4PQABP点在AC上(与AC不重合),QBC上.

1)当PQC的面积与四边形PABQ的面积相等时,求CP的长;

2)当PQC的周长与四边形PABQ的周长相等时,求CP的长;

3)试问:在AB上是否存在一点M,使得PQM为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出PQ的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+4x+m

1)如果二次函数的图象与x轴有两个交点,求m的取值范围;

2)如图,二次函数的图象过点A60),与y轴交于点B,点p是二次函数对称轴上的一个动点,当PB+PA的值最小时,求p的坐标

3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形OABC是矩形,ADEF是正方形,点ADx轴的正半轴,点Cy轴的正半轴上,点FAB上,点BE是双曲线y1=与直线y2=mx+n的交点,OA=2,OC=6.

(1)求k的值;

(2)求正方形ADEF的边长;

(3)直接写出不等式>mx+n的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,AB=OBC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°DF,连接AECF.

(1)AEO三点共线,求CF的长;

(2)求△CDF的面积的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,每个小正方形的边长都为1的顶点都在格点上,回答下列问题:

可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:______

画出绕点B逆时针旋转的图形

中,点C所形成的路径的长度为______

查看答案和解析>>

同步练习册答案