精英家教网 > 初中数学 > 题目详情
16、已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.
分析:本题可先将5拆成4+1,然后配出两个平方的式子相加,再根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”求出a、b的值,最后把a、b代入2a2+4b-3中即可.
解答:解:∵a2+b2+2a-4b+5=0,
∴a2+2a+1+b2-4b+4=0,
即(a+1)2+(b-2)2=0,
∴(a+1)2=0,(b-2)2=0,
即a+1=0,b-2=0,
∴a=-1,b=2.
∴2a2+4b-3=2+8-3=7.
点评:本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.解此类题时要先将方程配成两个平方的式子相加,然后再进行作答.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(A类)已知a2+2a+1=0,求2a2+4a-3的值.
(B类)已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.
解:我选做的是
 
类题.

查看答案和解析>>

科目:初中数学 来源:同步题 题型:解答题

已知a2+b2+2a-4b+5=0,求2a2+4b-3的值。

查看答案和解析>>

科目:初中数学 来源:徐州 题型:解答题

(A类)已知a2+2a+1=0,求2a2+4a-3的值.
(B类)已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.
我选做的是______类题.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《代数式》(05)(解析版) 题型:解答题

(2007•徐州)(A类)已知a2+2a+1=0,求2a2+4a-3的值.
(B类)已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.
解:我选做的是______类题.

查看答案和解析>>

同步练习册答案