精英家教网 > 初中数学 > 题目详情

【题目】如图,直线 CB 和射线 OACB//OA,点 B 在点 C 的右侧.且满足∠OCB=∠OAB100°,连接线段 OB,点 EF 在直线 CB 上,且满足∠FOB=∠AOBOE平分∠COF.

(1)求∠BOE

(2)当点 EF 在线段 CB 上时(如图 1),∠OEC 与∠OBA 的和是否是定值?若是,求出这个值;若不是,说明理由。

(3)如果平行移动 AB,点 EF 在直线 CB 上的位置也随之发生变化.当点 EF 在点 C 左侧时,∠OEC 和∠OBA 之间的数量关系是否发生变化?若不变,说明理由;若变化,求出他们之间的关系式.

【答案】1;(2;(2)变化,

【解析】

1)根据两直线平行,同旁内角互补求出,然后根据已知可得,由此计算即可得解;

2)根据两直线平行,同旁内角互补求出,再根据三角形的一个外角等于与它不相邻的两个内角的和可得,从而可得,由此即可解题;

3)同理(1)可得,根据三角形的内角和定理可知,从而得到,由此计算即可得解.

解:(1

平分

2

由(1)可知

3)变化,

证明:当点 EF 在点 C 左侧时,如图,

平分

即:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,点P为圆上一点,点C为AB延长线上一点,PA=PC,∠C=30°.

(1)求证:CP是⊙O的切线.
(2)若⊙O的直径为8,求阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为4,点E在对角线BD上,且∠DAE67.5°,EFAB,垂足为F,则EF的长为(  )

A. 1B. C. 4-2D. 3-4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】随着经济快速发展,环境问题越来越受到人们的关注校为了了解节能减排、垃圾分类等知 识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类, 并将结果绘制成以下两幅不完整的统计图,请根据统计图回答下列问题:

1)本次调查的学生共有 人;

2)将条形统计图补充完整;

3)“非常了解”的人中有,两名男生,,两名女生,若从中随机抽取两人去参加环保 知识竞赛,请用画树状图或列表的方法,求恰好抽到名男生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知某品牌的饮料有大瓶装与小瓶装之分某超市花了3800元购进一批该品牌的饮料共1000其中大瓶和小瓶饮料的进价及售价如下表所示:

大瓶

小瓶

进价(/)

5

2

售价(/)

7

3

(1)该超市购进大瓶和小瓶饮料各多少瓶?

(2)在大瓶饮料售出200小瓶饮料售出100瓶后商家决定将剩下的小瓶饮料的售价降低0.5元销售并把其中一定数量的小瓶饮料作为赠品在顾客一次性购买大瓶饮料时每满2瓶就送1瓶小瓶饮料送完即止超市要使这批饮料售完后获得的利润不低于1250那么小瓶饮料作为赠品最多只能送出多少瓶?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点A,C,D在⊙O上,过D作PF∥AC交⊙O于F,交AB于E,且∠BPF=∠ADC.

(1)判断直线BP和⊙O的位置关系,并说明你的理由;
(2)当⊙O的半径为 ,AC=2,BE=1时,求BP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,动点A,B同时从原点O出发,运动的速度都是每秒1个单位,动点A沿x轴正方向运动,动点B沿y轴正方向运动,以OA,OB为邻边建立正方形OACB,抛物线y=﹣x2+bx+c经过B,C两点,假设A,B两点运动的时间为t秒:
根据
(1)直接写出直线OC的解析式;
(2)当t=3秒时,求此时抛物线的解析式;此时抛物线上是否存在一点D,使得SBCD=6?若存在,求出点D的坐标;若不存在,说明理由;
(3)在(2)的条件下,有一条平行于y轴的动直线l,交抛物线于点E,交直线OC于点F,若以O、B、E、F四个点构成的四边形是平行四边形,求点F的坐标;
(4)在动点A、B运动的过程中,若正方形OACB内部有一个点P,且满足OP= ,CP=2,∠OPA=135°,直接写出此时AP的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张,不放回,再从剩下的卡片中随机抽取一张.

(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果,(卡片用A,B,C,D表示);
(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知点A00),B04),C3t+4),D3t. Nt)为ABCD内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则Nt)所有可能的值为

A. 67B. 78C. 678D. 689

查看答案和解析>>

同步练习册答案