精英家教网 > 初中数学 > 题目详情

【题目】如图所示,在Rt△ABC中,∠C=90°,AD平分∠BACBC于点D.

(1)BC=10,BD=6,则点DAB的距离是多少?

(2)若∠BAD=30°,求∠B的度数.

【答案】(1)4.(2)30°.

【解析】

过点DDEABE,先求出CD,再根据角平分线上的点到角的两边的距离相等可得DE=CD,从而得解;

根据角平分线的定义可求出∠CAB的度数,再根据三角形内角和定理即可解答.

解: 1)过点DDE⊥ABE,
∵BC=8,BD=5,
∴CD=BC-BD=10-6=4,
∵∠C=90°,AD平分∠BAC,
∴DE=CD=4,
即点DAB的距离是4;

(2) 因为AD平分∠BAC,

所以∠BAC=2BAD=60°.

又因为∠C=90°,

所以∠B=90°-60°=30°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣ ,设点B所表示的数为m.
(1)求m的值;
(2)求|m﹣1|+(m+6)0的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题情境:如图,在RtABC中,∠ACB=90°BAC=30°.

动手操作:(1)若以直角边AC所在的直线为对称轴.将RtABC作轴对称变换,请你在原图上作出它的对称图形:

观察发现:(2)RtABC和它的对称图形组成了什么图形?你最准确的判断是   

合作交流:(3)根据上面的图形,请你猜想直角边BC与斜边AB的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量合浦文昌塔的高度,某校兴趣小组在塔前的平地A处安装了测角仪,测得塔顶的仰角∠α=30°,又沿着塔的方向前进25米到达B处测量,测得塔顶的仰角∠β=45°,已知测角仪的高AC=1.5米,请你根据上述数据,计算塔FG的高度(结果精确到0.1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将两块直角三角板的直角顶点C叠放在一起.

(1)若DCB=35°,求ACB的度数;

(2)若ACB=140°,求DCE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的正方形组成的网格中,△ABC的顶点都在格点上,将△ABC绕点C顺时针旋转60°,则顶点A所经过的路径长为(  )
A.10π
B.
C. π
D.π

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1分别与x轴、y轴交于点B、C,且与直线l2交于点A.

(1)求出点A的坐标

(2)若D是线段OA上的点,且△COD的面积为12,求直线CD的解析式

(3)在(2)的条件下,设P是射线CD上的点,在平面内是否存在点Q,使以O、C、P、Q为顶点的四边形是菱形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大润发超市进了一批成本为8元/个的文具盒.调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:
(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);
(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】常数a,b,c在数轴上的位置如图所示,则关于x的一元二次方程ax2+bx+c=0根的情况是(
A.有两个相等的实数根
B.有两个不相等的实数根
C.无实数根
D.无法确定

查看答案和解析>>

同步练习册答案