精英家教网 > 初中数学 > 题目详情

【题目】如图1,△ABC和△CDE都是等腰直角三角形,∠C=90°,将△CDE绕点C逆时针旋转一个角度α(0°<α<90°),使点A,D,E在同一直线上,连接AD,BE.

(1)①依题意补全图2;
②求证:AD=BE,且AD⊥BE;
③作CM⊥DE,垂足为M,请用等式表示出线段CM,AE,BE之间的数量关系;
(2)如图3,正方形ABCD边长为 ,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.

【答案】
(1)

解:①依照题意补全图2,如下图(一)所示.

②证明:∵∠ACD+∠DCB=∠ACB=90°,∠BCE+∠DCB=∠DCE=90°,

∴∠ACD=∠BCE.

∵△ABC和△CDE都是等腰直角三角形,

∴AC=BC,DC=EC.

在△ADC和△BEC中,有

∴△ADC≌△BEC(SAS),

∴AD=BE,∠BEC=∠ADC.

∵点A,D,E在同一直线上,△CDE是等腰直角三角形,

∴∠CDE=∠CED=45°,∠ADC=180°﹣∠CDE=135°,

∴∠AEB=∠BEC﹣∠CED=135°﹣45°=90°,

∴AD⊥BE.

③依照题意画出图形,如图(二)所示.

∵SABC+SEBC=SCAE+SEAB

ACBC+ BECM= AE(CM+BE),

∴AC2﹣AEBE=CM(AE﹣BE).

∵△CDE为等腰直角三角形,

∴DE=2CM,

∴AE﹣BE=2CM


(2)

解:依照题意画出图形(三).

其中AB= ,DP=1,BD= AB=

由勾股定理得:BP= =3.

结合(1)③的结论可知:

AM= = =1.

故点A到BP的距离为1


【解析】(1)①根据旋转的特性画出图象;②由∠ACD、∠BCE均与∠DCB互余可得出∠ACD=∠BCE,由△ABC和△CDE都是等腰直角三角形可得出AC=BC、DC=EC,结合全等三角形的判定定理SAS即可得出△ADC≌△BEC,从而得出AD=BE,再由∠BCE=∠ADC=135°,∠CED=45°即可得出∠AEB=90°,即证出AD⊥BE;③依照题意画出图形,根据组合图形的面积为两个三角形的面积和可用AE,BE去表示CM;(2)根据题意画出图形,比照(1)③的结论,套入数据即可得出结论.
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在下列条件中,不能证明ABD≌△ACD的是( ).

A.BD=DCAB=AC B.ADB=ADCBD=DC

C.B=CBAD=CAD D. B=CBD=DC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:探究函数y= x2+ 的图象与性质.
小东根据学习函数的经验,对函数y= x2+ 的图象与性质进行了探究.
下面是小东的探究过程,请补充完整:
(1)函数y= x2+ 的自变量x的取值范围是
(2)下表是y与x的几组对应值.

x

﹣3

﹣2

﹣1

1

2

3

y

m

求m的值;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;

(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是(1, ),结合函数的图象,写出该函数的其它性质(一条即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市教育局对某镇实施教育精准扶贫,为某镇建中、小型两种图书室共30个.计划养殖类图书不超过2000本,种植类图书不超过1600本.已知组建一个中型图书室需养殖类图书80本,种植类图书50本;组建一个小型图书室需养殖类图书30本,种植类图书60本.

1)符合题意的组建方案有几种?请写出具体的组建方案;

2)若组建一个中型图书室的费用是2000元,组建一个小型图书室的费用是1500元,哪种方案费用最低,最低费用是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,CDAB边上的高,AC=4,BC=3,DB=

求:(1)求AD的长;

(2)△ABC是直角三角形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上.

(1)画出将△ABC向右平移2个单位后得到的△A1B1C1 , 再画出将△A1B1C1绕点B1按逆时针方向旋转90°后所得到的△A2B1C2
(2)求线段B1C1旋转到B1C2的过程中,点C1所经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1)是某河上一座古拱桥的截面图,拱桥桥洞上沿是抛物线形状.抛物线两端点与水面的距离都是1m,拱桥的跨度为10cm.桥洞与水面的最大距离是5m.桥洞两侧壁上各有一盏距离水面4m的景观灯.现把拱桥的截面图放在平面直角坐标系中,如图(2).求:

(1)抛物线的解析式;
(2)两盏景观灯P1、P2之间的水平距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.

(1)求证:△ABC≌△ADE;

(2)求∠FAE的度数;

(3)求证:CD=2BF+DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.
(1)求证:BE=CF;
(2)当四边形ABDF为菱形时,求CD的长.

查看答案和解析>>

同步练习册答案