精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AD是等腰△ABC底边上的高,且tanBAC上有一点E,满足AECE=2:3.那么tan∠ADE的值是_____

【答案】

【解析】

解:作EF⊥ADF,根据△ABC为等腰三角形可得∠B=∠C,从而求出tanC= tanBAD=3t,DC=4t,利用勾股定理求出AC=5t,再根据AE:CE=2:3,进而表示出AE=2t,根据平行得到△AEF∽△ACD,再根据相似的图形对应边成比例表示出FD,EF,进而在Rt△FDE,进而可得tan∠ADE.

解:作EF⊥ADF,如图,

∵△ABC为等腰三角形,AD为高,

∴∠B=∠C,

tanB

∴tanC= tanB=

∴可设AD=3t,DC=4t,

∴AC==5t

∵AE:CE=2:3,

∴AE=2t,

∵EF⊥AD,ADBC边上的高

∴EF∥CD,

∴△AEF∽△ACD,

=====

∴EF=t,AF=t

∴FD=AD-AF= AF=t,

Rt△DEF中,

tan∠FDE==

∴tan∠ADE=

故答案为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,, 的中点.以每秒1个单位长度的速度从点出发,沿向点运动;同时以每秒3个单位长度的速度从 出发,沿向点运动.停止运动时,点也随之停止运动.当运动时间秒时,以点为顶点的四边形是平行四边形.的值为_________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PB为⊙O的切线,点B为切点,直线PO交⊙O于点EF,过点BPO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BCAF

(1)求证:直线PA为⊙O的切线;

(2)若BC=6,tanF,求cosACB的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABCD的四个内角的平分线分别相交于点EFGH,连接AC.若EF=2,FG=GC=5,则AC的长是(  )

A. 12 B. 13 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′CDED′C′CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE△EFC′是否全等?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1AB=10AE=15.(i=1是指坡面的铅直高度BH与水平宽度AH的比)

1)求点B距水平面AE的高度BH

2)求广告牌CD的高度.

(测角器的高度忽略不计,结果精确到0.1.参考数据:1.4141.732

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子里装有红、黄、蓝三种颜色的球(除颜色以外,其余都相同),其中红球2个,黄球2个,从中随机摸出一个球是蓝色球的概率为

(1)求袋子里蓝色球的个数;

(2)甲、乙两人分别从袋中摸出一个球(不放回),求摸出的两个球中一个是红球一个是黄球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】实验初中组织了“英语手抄报”征集活动,现从中随机抽取部分作品,按ABCD四个等级进行评价,并根据统计结果绘制了如下两幅不完整的统计图.

(1)抽取了_____份作品;

(2)此次抽取的作品中等级为B的作品有______份,并补全条形统计图;

(3)若该校共征集到600份作品,请估计等级为A的作品约有多少份?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八(1)班同学为了解2015年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,

月均用水量x(t)

频数(户)

频率

0<x≤5

6

0.12

5<x≤10

m

0.24

10<x≤15

16

0.32

15<x≤20

10

0.20

20<x≤25

4

n

60≤x<70

2

0.04

请解答以下问题:

(1)求出吗、M,n的值,并把频数分布直方图补充完整;

(2)若该小区有1000户家庭,求该小区月均用水量超过10t的家庭大约有多少户?

查看答案和解析>>

同步练习册答案