【题目】如图,PB为⊙O的切线,点B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF,
(1)求证:直线PA为⊙O的切线;
(2)若BC=6,tan∠F=,求cos∠ACB的值.
【答案】(1)见解析;(2)
【解析】
(1)连接OB,先由切线的性质得出∠OBP=90°,再证明△OPA≌△OPB,由对应角相等得出∠OAP=∠OBP=90°,即可得出结论;
(2)根据相似三角形对应边成比例求得OD=BC=3,设AD=x,再由tan∠F=得FD=2x,则OA=OF=2x﹣3,根据勾股定理得出方程,解方程求出x,求出AB、AC的长,即可求出cos∠ACB的值求出.
证明:(1)连接OB,
∵PB是⊙O的切线,
∴∠PBO=90°,
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB,
在△PAO和△PBO中,
∴△PAO≌△PBO(SAS),
∴∠PAO=∠PBO=90°,
∴OA⊥PA,
∴直线PA为⊙O的切线;
(2)∵OA=OC,AD=DB,
∴OD=BC=3,
设AD=x,
∵tan∠F=,
∴FD=2x,则OA=OF=2x﹣3,
在Rt△AOD中,OA2=OD2+AD2,即(2x﹣3)2=32+x2,
解得,x=4,
则AD=4,AB=8,
∵AC是直径
∴∠ABC=90°
∴AC==10
∴cos∠ACB===
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数y =的图象经过点A(1,-3),一次函数y =kx +b的图象经过点A与点C(0,-4),且与反比例函数的图象相交于另一点B.试确定点B的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy的中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n),线段OA=,E为x轴上一点,且tan∠AOE=
(1)求该反比例函数和一次函数的解析式;
(2)求△A0B的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】知识再现
如图1,若点,在直线同侧,,到的距离分别是3和2,,现在直线上找一点,使的值最小,做法如下:
作点关于直线的对称点,连接,与直线的交点就是所求的点,线段的长度即为的最小值,请你求出这个最小值.
实践应用
如图2,菱形中,,点,,分别为线段,,上的任意一点,则的最小值为______;
拓展延伸
如图3,在四边形的对角线上找一点,使,保留作图痕迹,不必写出作法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,6),B(3,n)两点.
(1) 求一次函数的表达式;
(2) 根据图象写出kx+b-<0的x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形ABCD的边AD与x轴平行,A、B两点的横坐标分别为1和3,反比例函数y=的图象经过A、B两点,则菱形ABCD的面积是( )
A. 4 B. 4 C. 2 D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程x2+mx+m﹣3=0.
(1)若该方程的一个根为2,求m的值及方程的另一个根;
(2)求证:不论m取何实数,该方程都有两个不相等的实数根.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字.
(1)请用列表或画树状图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;
(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线上的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com