【题目】如图,△ABC中,∠BAC=108°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是( )
A.20°B.24°C.30°D.36°
科目:初中数学 来源: 题型:
【题目】小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回,16min时到家,假设小东始终以100m/min的速度步行,两人离家的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示:
(1)小东打电话时,他离家_________m;
(2)填上图中空格相应的数据_________,_________,_________;
(3)小东和妈妈相遇后,妈妈回家的速度为_________m/min;
(4)_________min时,两人相距700m.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,点在点的右侧,,的平分线交于点(不与,点重合),.设.
(1)若点在点的左侧,求的度数(用含的代数式表示)
(2)将(1)中的线段沿方向平移,当点移动到点右侧时,请画出图形并判断的度数是否改变.若改变,请求出的度数(用含的代数式表示);若不变,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市某中学举行“中国梦校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.
(1)根据图示填写下表;
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | ||
高中部 | 85 | 100 |
(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;
(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.
【答案】(1)
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | 85 | 85 |
高中部 | 85 | 80 | 100 |
(2)初中部成绩好些(3)初中代表队选手成绩较为稳定
【解析】解:(1)填表如下:
平均数(分) | 中位数(分) | 众数(分) | |
初中部 | 85 | 85 | 85 |
高中部 | 85 | 80 | 100 |
(2)初中部成绩好些。
∵两个队的平均数都相同,初中部的中位数高,
∴在平均数相同的情况下中位数高的初中部成绩好些。
(3)∵,
,
∴<,因此,初中代表队选手成绩较为稳定。
(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答。
(2)根据平均数和中位数的统计意义分析得出即可。
(3)分别求出初中、高中部的方差比较即可。
【题型】解答题
【结束】
21
【题目】受天气的影响,某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200斤,超市决定从甲、乙两个大型养殖场调运鸡蛋,已知从甲养殖场每天至少要调出300斤,从两养殖场调运鸡蛋到超市的路程和运费如下表:
到超市的路程千米 | 运费元斤千米 | |
甲养殖场 | 200 |
|
乙养殖场 |
|
设从甲养殖场调运鸡蛋x斤,总运费为W元,试写出W与x的函数关系式;
若某天计划从乙养殖场调运700斤鸡蛋,则总运费为多少元?
请你帮助超市设计一个调运方案,使得每天调运鸡蛋的总运费最低?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.
(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.
(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.
(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果关于x的一次函数y=(a+1)x+(a﹣4)的图象不经过第二象限,且关于x的分式方程有整数解,那么整数a值不可能是( )
A. 0B. 1C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
(2)求原来的路线AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在矩形ABCD中,AB=3,BC=4,连接BD.现将一个足够大的直角三角板的直角顶点P放在BD所在的直线上,一条直角边过点C,另一条直角边与AB所在的直线交于点G.
(1)是否存在这样的点P,使点P、C、G为顶点的三角形与△GCB全等?若存在,画出图形,并直接在图形下方写出BG的长.(如果你有多种情况,请用①、②、③、…表示,每种情况用一个图形单独表示,如果图形不够用,请自己画图)
(2)如图(2),当点P在BD的延长线上时,以P为圆心、PB为半径作圆分别交BA、BC延长线于点E、F,连EF,分别过点G、C作GM⊥EF,CN⊥EF,M、N为垂足.试探究PM与FN的关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下面的文字,解答问题.
大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.
请解答:(1)若的整数部分为,小数部分为,求的值.
(2)已知:,其中是整数,且,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com