精英家教网 > 初中数学 > 题目详情
如图,在等边△ABC中,AC=3,点O在AC上,且AO=1.点P是AB上一点,连接OP,以线段OP为一边作正△OPD,且O、P、D三点依次呈逆时针方向,当点D恰好落在边BC上时,则AP的长是(  )
A.1B.1.5C.2D.3

∵∠C=∠A=∠DOP=60°,OD=OP,
∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,
∴∠CDO=∠AOP.
在△ODC和△POA中,
∠C=∠A
∠COD=∠APO
OD=PO

∴△ODC≌△POA(AAS).
∴AP=OC.
∴AP=OC=AC-AO=2.
故选:C.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB=AC=13,M、N分别为AB、AC的中点,D、E在BC上,且DE=5,BC=10,连接DN、EM,
则图中阴影部分的面积为(  )
A.25B.30C.35D.40

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,点B、C、E在一条直线上,△ABC、△DCE均为等边三角形,
求证:(1)BD=AE;
(2)△CFG为等边三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列说法正确的是(  )
A.有一个角是60°的等腰三角形是等边三角形
B.有一个角是45°的等腰三角形是等腰直角三角形
C.等腰三角形的对称轴是顶角平分线
D.直角三角形一边上的中线等于这条边的一半

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知x,y,z都是大于0且小于1的实数,则x(1-y)+y(1-z)+z(1-x)的值(  )
A.大于1B.等于1
C.小于1D.大于或等于1

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图①,△ABC是等边三角形,D是AB上一点,以CD为一边向上作等边△ECD,连接AE,求证:∠CAE=∠CBA.
(2)在上题(1)中,当D点在AB的延长线上时,其他条件不变,如图②所示,请你补画出题意的图形,(1)的结论还成立吗?若成立,请给予证明;若不成立,请简要说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,△ABC为等边三角形,面积为S.D1、E1、F1分别是△ABC三边上的点,且AD1=BE1=CF1=
1
2
AB,连接D1E1、E1F1、F1D1,可得△D1E1F1是等边三角形,此时△AD1F1的面积S1=
1
4
S,△D1E1F1的面积S1=
1
4
S.
(1)当D2、E2、F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=
1
3
AB时如图2,
①求证:△D2E2F2是等边三角形;
②若用S表示△AD2F2的面积S2,则S2=______;若用S表示△D2E2F2的面积S2′,则S2′=______.
(2)按照上述思路探索下去,并填空:
当Dn、En、Fn分别是等边△ABC三边上的点,ADn=BEn=CFn=
1
n+1
AB时,(n为正整数)△DnEnFn是______三角形;
若用S表示△ADnFn的面积Sn,则Sn=______;若用S表示△DnEnFn的面积Sn′,则S′n=______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图:△ABC和△ADE是等边三角形.证明:BD=CE.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,AB=AC,D是三角形外一点,且∠ABD=60°,BD+DC=AB.求证:∠ACD=60°.

查看答案和解析>>

同步练习册答案