精英家教网 > 初中数学 > 题目详情

【题目】已知2x+3y﹣3=0,求9x27y的值.

【答案】解:∵2x+3y﹣3=0,
∴2x+3y=3,
则9x27y=32x33y=32x+3y=33=27.
故答案为:27.
【解析】先把9x和27y都化为3为底数的形式,然后求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知平行四边形ABCD中,∠B70°,则∠A_____,∠D_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为345的整数倍的直角三角形,已知面积求边长”这一问提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为345的整数倍,设其面积为S,则第一步: m;第二步: k;第三步:分别用345乘以k,得三边长”.

1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;

2)你能证明积求勾股法的正确性吗?请写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016重庆市第26题)如图1,二次函数的图象与一次函数y=kx+b(k0)的图象交于A,B两点,点A的坐标为(0,1),点B在第一象限内,点C是二次函数图象的顶点,点M是一次函数y=kx+b(k0)的图象与x轴的交点,过点B作x轴的垂线,垂足为N,且SAMO:S四边形AONB=1:48.

(1)求直线AB和直线BC的解析式;

(2)点P是线段AB上一点,点D是线段BC上一点,PD//x轴,射线PD与抛物线交于点G,过点P作PEx轴于点E,PFBC于点F,当PF与PE的乘积最大时,在线段AB上找一点H(不与点A,点B重合),使GH+BH的值最小,求点H的坐标和GH+BH的最小值;

(3)如图2,直线AB上有一点K(3,4),将二次函数沿直线BC平移,平移的距离是t(t0),平移后抛物线使点A,点C的对应点分别为点A,点C;当ACK是直角三角形时,求t的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形的对角,邻角.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果ab都是实数,那么a+bb+a,这个事件是_____事件,(填随机不可能必然).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如下表所示:

A

B

进价(万元/套)

1.5

1.2

售价(万元/套)

1.65

1.4

该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元。

(毛利润=(售价 - 进价)×销售量)

(1)该商场计划购进A,B两种品牌的教学设备各多少套?

(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少数量的1.5倍。若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据分式的基本性质,把几个异分母的分式分别化成与原来的分式的同分母的分式,叫做分式的通分.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABCABC是位似图形.ABC的面积为6 cm2ABC的周长是ABC的周长一半.则ABC的面积等于(  )

A. 24 cm2 B. 12 cm2 C. 6 cm2 D. 3 cm2

查看答案和解析>>

同步练习册答案