精英家教网 > 初中数学 > 题目详情
1.若a=1,b=2,则以a,b为边长的等腰三角形的周长为5.

分析 题目给出等腰三角形有两条边长a=1,b=2,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.

解答 解:分两种情况考虑:
(1)如果腰长为1,则三边是:1、1、2,不满足三角形两边之和大于第三边的性质,不成立;
(2)如果腰长为2,则三边是:2、2、1,满足三角形两边之和大于第三边的性质,成立,故周长=2+2+1=5.
所以以a,b为边长的等腰三角形的周长为5.
故答案为:5.

点评 本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,O是等边△ABC内的一点,已知∠AOB=110°,∠COD=60°,∠BOC=α,△BOC≌△ADC.
(1)求证:△COD是等边三角形;
(2)若α=150°,试判定△AOD的形状,并说明理由;
(3)当△AOD是等腰三角形时,试求出α的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图,已知∠1=∠2,欲得到△ABD≌△ACD,则从下列条件中补选一个,错误的选法是(  )
A.∠ADB=∠ADCB.DB=DCC.∠B=∠CD.AB=AC

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,已知直线m∥n,A、B是直线m上的任意两点,C、D是直线n上的任意两点,连AD、BC,∠ABC与∠ADC的平分线相交于点E,若∠BAD=80°.
(1)求∠EDC的度数;
(2)若∠BCD=30°,试求∠BED的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列计算正确的是(  )
A.x2•x4=x6B.x2+x3=x5C.(x23=x5D.x10÷x2=x5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上任一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,解答下列问题:
(1)如果AB=AC,∠BAC=90°.
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为垂直,数量关系为相等.
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)小明通过尝试发现如图丁:如果AB≠AC,∠BAC≠90°,只要∠ACB=45°,CF与BD的位置关系就不变(点C、F重合除外),你同意他的说法吗?并请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.2015年6月5日是第44个“世界环境日”.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?
(3)在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.解下列方程组:$\left\{\begin{array}{l}{x+2(y-1)=6}&{①}\\{2(x-1)=y-1}&{②}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.例如,第一个月用水16吨,需交水费17.8元,第二个月用水20吨,需交水费23元.
(1)求每吨水的基础价和调节价;
(2)设每月用水量为n吨,应交水费为m元,写出m与n之间的函数解析式;
(3)若某月用水12吨,应交水费多少元?

查看答案和解析>>

同步练习册答案