精英家教网 > 初中数学 > 题目详情
3.如图,在△ABC中,点D是BA边延长线上一点,过点D作DE∥BC,交CA延长线于点E,点F是DE延长线上一点,连接AF.
(1)如果$\frac{AD}{AB}$=$\frac{2}{3}$,DE=6,求边BC的长;
(2)如果∠FAE=∠B,FA=6,FE=4,求DF的长.

分析 (1)根据DE∥BC,得到△ADE∽△ABC,根据相似三角形的性质即可得到结论;
(2)由已知条件得到∠EAF=∠D,推出△FAE∽△FDA,根据相似三角形的性质即可得到结论.

解答 解:(1)∵DE∥BC,
∴△ADE∽△ABC,
∴$\frac{AD}{AB}=\frac{DE}{BC}$,
∵DE=6,
∴BC=9;
(2)∵∠FAE=∠B,∠B=∠D,
∴∠EAF=∠D,
∵∠F=∠F,
∴△FAE∽△FDA,
∴$\frac{EF}{FA}=\frac{FA}{DF}$,
∴DF=$\frac{F{A}^{2}}{EF}$=9.

点评 本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.下列方程中,关于x的一元二次方程是(  )
A.3(x+1)2=2(x-1)B.$\frac{1}{{x}^{2}}$+$\frac{1}{x}$-2=0C.ax2+bx+c=0D.x2+2x=x2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,在平面直角坐标系内,抛物线y=2x2+bx+c的顶点为A(2,1),同时与直线x=3交于点B,连接OA并延长与直线x=3交于点C.
(1)求抛物线的表达式;
(2)求出△ABC的面积;
(3)若点P为抛物线对称轴上的任意一点,则是否存在以A、B、P为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,四边形ABCO是平行四边形,点C在x轴的负半轴上,AO=2cm,AB=4cm,∠BAO=60°,将?ABCO绕点A逆时针旋转60°,得到对应的?ADEF,解答下列问题:
(1)画出旋转后的?ADEF(不写作法,不证明,保留作图痕迹);
(2)求?ABCO旋转过程中扫过的区域的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.(1)$\frac{x}{x-2}$-1=$\frac{8}{{x}^{2}-4}$
(2)2x2+3=7x.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图是某几何体的三视图,这个几何体的侧面积是(  )
A.B.2$\sqrt{10}$πC.$\sqrt{10}$πD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,在小正方形的边长均为l的方格纸中,有线段AB,BC.点A,B,C均在小正方形的顶点上.
(1)在图1中画出四边形ABCD,四边形ABCD是轴对称图形,点D在小正方形的项点上:
(2)在图2中画四边形ABCE,四边形ABCE不是轴对称图形,点E在小正方形的项点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的面积为7.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.有序实数对与平面直角坐标系内点的对应关系
我们知道,任何一个有序数对(a,b),在平面直角坐标系中都可以用唯一的一个点表示.请画出一个平面直角坐标系,并标出点($\sqrt{3},0$),(0,-$\sqrt{5}$),($\sqrt{3}$,-$\sqrt{5}$)在平面直角坐标系中的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,某数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端点A的仰角为30°,再向旗杆的方向前进12米,到达点D处(C,D,B三点在同一直线上),又测得旗杆顶端点A的仰角为45°,请计算旗杆AB的高度.(结果保留根号)

查看答案和解析>>

同步练习册答案