精英家教网 > 初中数学 > 题目详情

如图,已知点A、C、B、D在同一直线上,AM=CN,BM=DN,∠M=∠N,求证:AC=BD.

证明:∵AM=CN,∠M=∠N,BM=DN,
∴△AMB≌△CND.
∴AB=CD.
∴AB-BC=CD-BC.
即:AC=BD.
分析:三角形全等条件中必须是三个元素,并且一定有一组对应边相等,用SAS即可证明△AMB≌△CND,从而可得AC=BD.
点评:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,本题用全等判定“SAS“.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

16、如图,已知点D是∠ABC的平分线上一点,点P在BD上,PA⊥AB,PC⊥BC,垂足分别为A,C、下列结论错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点C为反比例函数y=-
6x
上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知点A、B、C、D均在已知圆上,AD∥BC,AC平分∠BCD,∠ADC=120°,四边形ABCD的周长为10cm.图中阴影部分的面积为(  )
A、
3
2
B、
3
-
3
C、2
3
D、4
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点D为△ABC中AC边上一点,且AD:DC=3;4,设
BA
=
a
BC
b

(1)在图中画出向量
BD
分别在
a
b
方向上的分向量;
(2)试用
a
b
的线性组合表示向量
BD

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知点C为AB上一点,AC=12cm,CB=
23
AC,D、E分别为AC、AB的中点.
(1)图中共有
10
10
线段.
(2)求DE的长.

查看答案和解析>>

同步练习册答案