精英家教网 > 初中数学 > 题目详情
20.如图,在平面直角坐标系中,点O为坐标原点,△ABC是边长为16的正三角形,点A、B分别在x轴的正半轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则线段OC的长的最大值是8+8$\sqrt{3}$.

分析 取AB的中点D,连接OD、CD,根据直角三角形斜边上的中线以及等边三角形的性质,即可得出OD、CD的长度,再根据三角形的三边关系即可得出OC<OD+CD,由此即可得出当点O、C、D三点共线时,OC=OD=CD的值最大,代入数据即可得出结论.

解答 解:取AB的中点D,连接OD、CD,如图所示.
∵△AOB为直角三角形,D为AB的中点,
∴OD=$\frac{1}{2}$AB=8,
∵△ABC是边长为16的正三角形,D为AB的中点,
∴CD=$\frac{\sqrt{3}}{2}$AB=8$\sqrt{3}$.
在△OCD中,OC<OD+CD.
当点O、C、D三点共线时,OC=OD+CD最大,
此时OC=8+8$\sqrt{3}$.
故答案为:8+8$\sqrt{3}$.

点评 本题考查了直角三角形斜边上的中线、等边三角形的性质以及三角形的三边关系,解题的关键是找出当点O、C、D三点共线时OC的长取最大值.本题属于基础题,难度不大,解决该题型题目时,利用数形结合解决问题是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.计算
①(-3x)2(x23        
②运用公式计算98×102.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,E是三角形ABC的中线AD上任意一点,过E分别作AB和AC的平行线EM、EN,求证:DM=DN.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.已知关于x的两个二次函数y1=a1x2+b1x+c1和y2=a2x2+b2x+c2的图象关于原点O成中心对称,给出以下结论:
①a1c1=a2c2
 ②b1c1+b2c2=0; 
③函数y3=y1-y2的图象关于y轴对称;
④函数y4=y1+y2的图象是抛物线
则以上结论一定成立的是①②③(把所有正确结论的序号都填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.若正数a、b满足$\frac{{a}^{2}}{{a}^{4}+{a}^{2}+1}$=$\frac{1}{24}$,$\frac{{b}^{3}}{{b}^{6}+{b}^{3}+1}$=$\frac{1}{19}$,则$\frac{ab}{({a}^{2}+a+1)({b}^{2}+b+1)}$=(  )
A.24B.18C.$\frac{1}{18}$D.$\frac{1}{24}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.若$\sqrt{(x-1)^{2}}$+|x+2|的值是常数,则x的取值范围是-2<x<1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.有三张点数不同的扑克牌,随意分给甲、乙、丙每人一张,然后收起来洗牌之后再分给他们,这样分了n次之后,三人累计的点数:甲为16,乙为11,丙为24,已知甲第一次得到的牌是其中点数最大的一张,则这三张牌的点数各是10、4、3.(说明:扑克牌的点数与牌面上的数字相同,对于“A”、“K”、“Q”、“J”,它们的点数分别是l,13,12,11)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.我们定义:若整式M与N满足:M+N=k(k为整数),我们称M与N为关于k的平衡整式,例如,若M+N=1,我们称M与N为关于1的平衡整式.若3x-10与y为关于2的平衡整式,2x与5y+10互为关5的平衡整式,求x+y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,在△ABC中,BC=10,AB=6,AC=8,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则
(1)∠BAC=90度;
(2)AM的最小值是2.4.

查看答案和解析>>

同步练习册答案