精英家教网 > 初中数学 > 题目详情

【题目】ABC中,已知AB=AC,BAC=90°,E为边AC上一点,连接BE.

(1)如图1,若ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;

(2)如图2,D为AB上一点,且满足AE=AD,过点A作AFBE交BC于点F,过点F作FGCD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.

【答案】(1) (2)证明见解析

【解析】

(1)如图1中,在AB上取一点M,使得BM=ME,连接ME.,设AE=x,则ME=BM=2x,AM=x,根据AB2+AE2=BE2,可得方程(2x+x)2+x2=22,解方程即可解决问题.
(2)如图2中,作CQ⊥AC,交AF的延长线于Q,首先证明EG=MG,再证明FM=FQ即可解决问题.

解:如图 1 中,在 AB 上取一点 M,使得 BM=ME,连接 ME.

RtABE 中,∵OB=OE,

BE=2OA=2,

MB=ME,

∴∠MBE=MEB=15°,

∴∠AME=MBE+MEB=30°,设 AE=x,则 ME=BM=2x,AM=x,

AB2+AE2=BE2

x= (负根已经舍弃),

AB=AC=(2+

BC= AB= +1.

CQAC,交 AF 的延长线于 Q,

AD=AE ,AB=AC ,BAE=CAD,

∴△ABE≌△ACD(SAS),

∴∠ABE=ACD,

∵∠BAC=90°,FGCD,

∴∠AEB=CMF,

∴∠GEM=GME,

EG=MG,

∵∠ABE=CAQ,AB=AC,BAE=ACQ=90°,

∴△ABE≌△CAQ(ASA),

BE=AQ,AEB=Q,

∴∠CMF=Q,

∵∠MCF=QCF=45°,CF=CF,

∴△CMF≌△CQF(AAS),

FM=FQ,

BE=AQ=AF+FQ=AF=FM,

EG=MG,

BG=BE+EG=AF+FM+MG=AF+FG.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知直线AB 一点O,以O为端点画射线OC,作∠AOC的角平分线OD,作∠BOC的角平分线OE

1)按要求完成画图;

2)通过观察、测量你发现∠DOE= °;

3)补全以下证明过程:

证明:∵OD平分∠AOC(已知)

∴∠DOC= AOC

OE平分∠BOC(已知)

∴∠EOC= BOC

∵∠AOC+BOC= °

∴∠DOE=DOC+EOC= (∠AOC+BOC= °.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两位同学将一个二次三项式因式分解,一位同学因看错了一次项系数而分解成2,另一位同学因看错了常数项而分解成2,请将原多项式因式分解.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面积;

(2)在图中作出△ABC关于y轴的对称图形△A1B1C1

(3)写出点A1,B1,C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1和∠2互补,∠C=EDF.

(1)判断DFEC的关系为   

(2)试判断DEBC的关系,并说明理由.

(3)试判断∠DEC与∠DFC的关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某天放学后,小红步行,小丽骑自行车沿同一条笔直的马路到图书馆看书,图中线段OABC分别表示小红、小丽离开学校的路程s(米)与小红所用的时间t(分钟)的函数关系,根据图象解答下列问题:

(1)小丽比小红迟出发   分钟,小红步行的速度是   /分钟;(直接写出结果)

(2)两人在路上相距不超过200米的时间有多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,一次函数的图象分别与x轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D,点D的横坐标为4,直线CD与y轴相交于点E.

(1)直线CD的函数表达式为   ;(直接写出结果)

(2)点Q为线段DE上的一个动点,连接BQ.

若直线BQ将BDE的面积分为1:2两部分,试求点Q的坐标;

BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上,请直接写出点Q的坐标: .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的 ,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.
(1)求证:直线EF是⊙O的切线;
(2)若CF=5,cosA= ,求BE的长.

查看答案和解析>>

同步练习册答案