精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).

(1)求出△ABC的面积;

(2)在图中作出△ABC关于y轴的对称图形△A1B1C1

(3)写出点A1,B1,C1的坐标.

【答案】(1) ;(2)作图略 ;(3)A1(1,5),B1(1,0),C1(4,3)

【解析】

1)根据网格可以看出三角形的底AB5,高是CAB的距离,是3,利用面积公式计算.

2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.

3)从图中读出新三角形三点的坐标.

解答:解:(1SABC=×5×3=(或7.5)(平方单位).

2)如图.

3A115),B110),C143).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形是半高三角形,且斜边则它的周长等于_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PEAB于E,连接PQ交AB于D.

(1)当BQD=30°时,求AP的长;

(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,分别平行x,y轴的两直线a,b相交于点A(3,4).连接OA,若在直线a上存在点P,使△AOP是等腰三角形,那么所有满足条件的点P的坐标是___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正比例函数y1=k1x(k1>0)与反比例函数y2= (k2>0)部分图象如图所示,则不等式k1x> 的解集在数轴上表示正确的是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,DAC中点,PAB上的动点,将P绕点D逆时针旋转得到,连线段最小值为  

A. B. C. 2 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,反比例函数y= (x>0)的图象经过点A(2 ,1),射线AB与反比例函数图象交与另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.

(1)求k和a的值;
(2)直线AC的解析式;
(3)如图3,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于N,连接CM,求△CMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为(

A.
B.
C.
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣ x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为 m.

(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?

查看答案和解析>>

同步练习册答案