精英家教网 > 初中数学 > 题目详情
20.今年梦想企业一月份产值200万,二、三月份产值均以相同的增长率持续增长,结果三月份产值比二月份产值增加了22万,若设该企业二、三月份产值平均增长率为x.
(1)该企业二月份的产值为200(1+x)万(用含x的代数式表示)
(2)求x的值.

分析 (1)设该企业二、三月份产值平均增长率为x,根据二月份产值=一月份产值×(1+x),代入数值即可;
(2)根据三月份的产值=二月份的产值+22万元,列出方程求解即可.

解答 解:(1)该企业二月份的产值为200(1+x)万.
故答案为200(1+x)万;

(2)设该企业二、三月份产值平均增长率为x,由题意得:
200(1+x)2=200(1+x)+22,
解得:x=0.1,x=-1.1(不合题意舍去).
答:该企业二、三月份产值平均增长率是10%.

点评 本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”),可根据以上知识来列方程求解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法:
①2a+b=0;②当-1≤x≤3时,y<0;③abc<0;④9a+3b+c=0且4a+2b+c<0;⑤$\frac{{b}^{2}-4ac}{4a}$>0;⑥若(0,y1),(1,y2)是抛物线上的两点,则y1>y2
其中正确的是(  )个.
A.2B.3C.4D.5

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.李克强总理在2017年政府工作报告中指出:“完善就业政策,加大就业培训力度,加强对灵活就业、新就业形态的支持,今年高校毕业生7950000人,再创历史新高,要实施好就业促进、创业引领、基层成长等计划,促进多渠道就业创业.”其中数据7950000用科学记数法表示是(  )
A.795×104B.7.95×105C.0.795×107D.7.95×106

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,一艘船上午9时在A处望见灯塔E在北偏东60°方向上,此船沿正东方向以每小时30海里的速度航行,11时到达B处,在B处测得灯塔E在北偏东15°方向上.
(1)求∠AEB的度数;
(2)已知灯塔E周围40海里内有暗礁,问:此船继续向东方向航行,有无触礁危险?(参考数据:$\sqrt{2}$≈1.414,$\sqrt{3}$≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.观察下列等式:
①1-1-$\frac{1}{2}$=-$\frac{1}{1×2}$;
②$\frac{1}{2}$-$\frac{1}{3}$-$\frac{1}{4}$=-$\frac{1}{3×4}$;
③$\frac{1}{3}$-$\frac{1}{5}$-$\frac{1}{6}$=-$\frac{1}{5×6}$;
④$\frac{1}{4}$-$\frac{1}{7}$-$\frac{1}{8}$=-$\frac{1}{7×8}$;

根据上述规律解决下列问题:
(1)完成第⑤个等式;
(2)写出你猜想的第n个等式(用含n的式子表示)并证明其正确性.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.掷一枚质地均匀的骰子,下列事件是不可能事件是(  )
A.向上一面点数是奇数B.向上一面点数是偶数
C.向上一面点数是大于6D.向上一面点数是小于7

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,正方形ABCD,过A作直线AE,作DG⊥AE,AG=GE,连接DE.
(1)求证:DE=DC;
(2)若∠CDE的平分线交AE的延长线于F点,连接BF,求证:DF-FB=$\sqrt{2}$FA;
(3)若正方形的边长为2,连接FC,交AB于点P,当P点为AB的中点时,请直接写出AE的长为$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.长清区政府准备在大学城修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的正弦值为$\frac{1}{3}$,则坡面AC的长度为(  )m.
A.16B.10C.18D.8$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,抛物线y=-$\frac{1}{2}$x2+$\frac{3}{2}$x+2与x轴交于点A,B,与y轴交于点C.点P是线段BC上的动点(点P不与B,C重合),连接并延长AP交抛物线于另一点Q,设点Q的横坐标为x.
(1)①写出点A,B,C的坐标:A(-1,0),B(4,0),C(0,2);
②求证:△ABC是直角三角形;
(2)记△BCQ的面积为S,求S关于x的函数表达式;
(3)在点P的运动过程中,$\frac{PQ}{AP}$是否存在最大值?若存在,求出$\frac{PQ}{AP}$的最大值及点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案