精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),该抛物线的对称轴为直线x=﹣1,若点C(﹣ ,y1),D(﹣ ,y2),E( ,y3)均为函数图象上的点,则y1 , y2 , y3的大小关系为

【答案】y3<y1<y2
【解析】解:∵抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=﹣1,开口向下,
∴离对称轴近的点的函数值大,
∵|﹣ +1|<|﹣ +1|<| +1|
∴y3<y1<y2
所以答案是y3<y1<y2
【考点精析】利用二次函数的图象和二次函数的性质对题目进行判断即可得到答案,需要熟知二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点;增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学为了绿化校园,计划购买一批榕树和香樟树,经市场调查,榕树的单价比香樟树少20,购买3棵榕树和2棵香樟树共需340.

(1)榕树和香樟树的单价各是多少?

(2)根据学校实际情况,需购买两种树苗共150,总费用不超过10840,且购买香樟树的棵数不少于榕树的1.5,请你算算该校本次购买榕树和香樟树共有哪几种方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=﹣x2+2x+m.
(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;
(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】飞机着陆后滑行的距离S(单位:m)关于滑行时间t(单位:s)的函数解析式是:S=60t﹣1.5t2
(1)直接指出飞机着陆时的速度;
(2)直接指出t的取值范围;
(3)画出函数S的图象并指出飞机着陆后滑行多远才能停下来?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】古埃及人曾经用如图所示的方法画直角:把一根长绳打上等距离的13个结,然后以3个结间距、4个结间距、5个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角,这样做的道理是(  )

A. 直角三角形两个锐角互补

B. 三角形内角和等于180°

C. 如果三角形两条边长的平方和等于第三边长的平方

D. 如果三角形两条边长的平方和等于第三边长的平方,那么这个三角形是直角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD=8,A=60°,ADC=150°,四边形ABCD的周长为32.

(1)求∠BDC的度数;

(2)四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠C=90°,AC=8,BC=3,线段PQ=AB,P、Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到AP=_________时,才能使ΔABC与ΔAPQ 全等。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某市有一块长为(2a+b)米,宽为(a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像.

(1)试用含ab的代数式表示绿化的面积是多少平方米?

(2)若a=3,b=2,请求出绿化面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,E是AD上一点,AE=AB,过点E作直线EF,在EF上取一点G,使得∠EGB=∠EAB,连接AG.

(1)如图1,当EF与AB相交时,若EAB=60°,求证:EG=AG+BG;

(2)如图2,当EF与AB相交时,若∠EAB=α(0°<α<90°),请你直接写出线段EG、AG、BG之间的数量关系(用含α的式子表示);

(3)如图3,当EF与CD相交时,且EAB=90°,请你写出线段EG、AG、BG之间的数量关系,并证明你的结论.

查看答案和解析>>

同步练习册答案